Constructing a Boolean implication network to study the interactions between environmental factors and OTUs

Congmin Zhu, Rui Jiang, Ting Chen

PDF(2475 KB)
PDF(2475 KB)
Quant. Biol. ›› 2014, Vol. 2 ›› Issue (4) : 127-141. DOI: 10.1007/s40484-014-0037-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Constructing a Boolean implication network to study the interactions between environmental factors and OTUs

Author information +
History +

Abstract

Mining relationships between microbes and the environment they live in are crucial to understand the intrinsic mechanisms that govern cycles of carbon, nitrogen and energy in a microbial community. Building upon next-generation sequencing technology, the selective capture of 16S rRNA genes has enabled the study of co-occurrence patterns of microbial species from the viewpoint of complex networks, yielding successful descriptions of phenomena exhibited in a microbial community. However, since the effects of such environmental factors as temperature or soil conditions on microbes are complex, reliance on the analysis of co-occurrence networks alone cannot elucidate such complicated effects underlying microbial communities. In this study, we apply a statistical method, which is called Boolean implications for metagenomic studies (BIMS) for extracting Boolean implications (IF-THEN relationships) to capture the effects of environmental factors on microbial species based on 16S rRNA sequencing data. We first demonstrate the power and effectiveness of BIMS through comprehensive simulation studies and then apply it to a 16S rRNA sequencing dataset of real marine microbes. Based on a total of 6,514 pairwise relationships identified at a low false discovery rate (FDR) of 0.01, we construct a Boolean implication network between operational taxonomic units (OTUs) and environmental factors. Relationships in this network are supported by literature, and, most importantly, they bring biological insights into the effects of environmental factors on microbes. We next apply BIMS to detect three-way relationships and show the possibility of using this strategy to explain more complex relationships within a microbial community.

Graphical abstract

Keywords

Boolean implication / metagenome / marine OTUs / environmental factors

Cite this article

Download citation ▾
Congmin Zhu, Rui Jiang, Ting Chen. Constructing a Boolean implication network to study the interactions between environmental factors and OTUs. Quant. Biol., 2014, 2(4): 127‒141 https://doi.org/10.1007/s40484-014-0037-3

References

[1]
Wooley, J. C., Godzik, A. and Friedberg, I. (2010) A primer on metagenomics. PLOS Comput. Biol., 6, e1000667
CrossRef Pubmed Google scholar
[2]
Chaffron, S., Rehrauer, H., Pernthaler, J. and von Mering, C. (2010) A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res., 20, 947-959
CrossRef Pubmed Google scholar
[3]
Amann, R. I., Ludwig, W. and Schleifer, K. H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 59, 143-169
Pubmed
[4]
Pace, N. R. (1997) A molecular view of microbial diversity and the biosphere. Science, 276, 734-740
CrossRef Pubmed Google scholar
[5]
Rappé, M. S. and Giovannoni, S. J. (2003) The uncultured microbial majority. Annu. Rev. Microbiol., 57, 369-394
CrossRef Pubmed Google scholar
[6]
King, A. J., Farrer, E. C., Suding, K. N. and Schmidt, S. K. (2012) Co-occurrence patterns of plants and soil bacteria in the high-alpine subnival zone track environmental harshness. Front. Microbiol, 3, 347
CrossRef Pubmed Google scholar
[7]
Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., Loiacono, K. A., Lynch, B. A., MacNeil, I. A., Minor, C., (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol., 66, 2541-2547
CrossRef Pubmed Google scholar
[8]
Voget, S., Leggewie, C., Uesbeck, A., Raasch, C., Jaeger, K. E. and Streit, W. R. (2003) Prospecting for novel biocatalysts in a soil metagenome. Appl. Environ. Microbiol., 69, 6235-6242
CrossRef Pubmed Google scholar
[9]
Nautiyal, C. S., Chauhan, P. S. and Nene, Y. L. (2007) Medicinal smoke reduces airborne bacteria. J. Ethnopharmacol., 114, 446-451
CrossRef Pubmed Google scholar
[10]
Ortiz, G., Yagüe, G., Segovia, M. and Catalán, V. (2009) A study of air microbe levels in different areas of a hospital. Curr. Microbiol., 59, 53-58
CrossRef Pubmed Google scholar
[11]
Martinez, A., Tyson, G. W. and Delong, E. F. (2010) Widespread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomic analyses. Environ. Microbiol., 12, 222-238
CrossRef Pubmed Google scholar
[12]
Steele, J. A., Countway, P. D., Xia, L., Vigil, P. D., Beman, J. M., Kim, D. Y., Chow, C. E., Sachdeva, R., Jones, A. C., Schwalbach, M. S., (2011) Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J., 5, 1414-1425
CrossRef Pubmed Google scholar
[13]
Stein, J. L., Marsh, T. L., Wu, K. Y., Shizuya, H. and DeLong, E. F. (1996) Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J. Bacteriol., 178, 591-599
Pubmed
[14]
Tseng, C. H. and Tang, S. L. (2014) Marine microbial metagenomics: from individual to the environment. Int. J. Mol. Sci., 15, 8878-8892
CrossRef Pubmed Google scholar
[15]
Woyke, T., Xie, G., Copeland, A., González, J. M., Han, C., Kiss, H., Saw, J. H., Senin, P., Yang, C., Chatterji, S., (2009) Assembling the marine metagenome, one cell at a time. PLoS One, 4, e5299
Pubmed
[16]
Manichanh, C., Rigottier-Gois, L., Bonnaud, E., Gloux, K., Pelletier, E., Frangeul, L., Nalin, R., Jarrin, C., Chardon, P., Marteau, P., (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut, 55, 205-211
CrossRef Pubmed Google scholar
[17]
Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen,D., (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490, 55-60
CrossRef Pubmed Google scholar
[18]
Cho, I. and Blaser, M. J. (2012) The human microbiome: at the interface of health and disease. Nat. Rev. Genet., 13, 260-270
Pubmed
[19]
Rasheed, Z., Rangwala, H. and Barbará, D. (2013) 16S rRNA metagenome clustering and diversity estimation using locality sensitive hashing. BMC Syst. Biol., 7, S11
CrossRef Pubmed Google scholar
[20]
Eren, A. M., Maignien, L., Sul, W. J., Murphy, L. G. and Grim, S. L. (2013) Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evol., 4
[21]
Chen, W., Zhang, C. K., Cheng, Y., Zhang, S. and Zhao, H. (2013) A comparison of methods for clustering 16S rRNA sequences into OTUs. PLoS One, 8, e70837
CrossRef Pubmed Google scholar
[22]
Hao, X., Jiang, R. and Chen, T. (2011) Clustering 16S rRNA for OTU prediction: a method of unsupervised Bayesian clustering. Bioinformatics, 27, 611-618
CrossRef Pubmed Google scholar
[23]
Schloss, P. D. and Handelsman, J. (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol., 71, 1501-1506
CrossRef Pubmed Google scholar
[24]
Huse, S. M., Welch, D. M., Morrison, H. G. and Sogin, M. L. (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol., 12, 1889-1898
CrossRef Pubmed Google scholar
[25]
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol., 75, 7537-7541
CrossRef Pubmed Google scholar
[26]
Assenov, Y., Ramírez, F., Schelhorn, S. E., Lengauer, T. and Albrecht, M. (2008) Computing topological parameters of biological networks. Bioinformatics, 24, 282-284
CrossRef Pubmed Google scholar
[27]
Li, W. and Godzik, A. (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22, 1658-1659
CrossRef Pubmed Google scholar
[28]
Li, W., Jaroszewski, L. and Godzik, A. (2001) Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics, 17, 282-283
CrossRef Pubmed Google scholar
[29]
Sahoo, D., Dill, D. L., Gentles, A. J., Tibshirani, R. and Plevritis, S. K. (2008) Boolean implication networks derived from large scale, whole genome microarray datasets. Genome Biol., 9, R157
CrossRef Pubmed Google scholar
[30]
Watts, D. J. and Strogatz, S. H. (1998) Collective dynamics of ‘small-world’ networks. Nature, 393, 440-442
CrossRef Pubmed Google scholar
[31]
Montoya, J. M., Pimm, S. L. and Solé, R. V. (2006) Ecological networks and their fragility. Nature, 442, 259-264
CrossRef Pubmed Google scholar
[32]
Timothy Pennington, J. and Chavez, F. P. (2000) Seasonal fluctuations of temperature, salinity, nitrate, chlorophyll and primary production at station H3/M1 over 1989-1996 in Monterey Bay, California. Deep Sea Res. Part II Top. Stud. Oceanogr., 47, 947-973
CrossRef Google scholar
[33]
Edgar, R. C. (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460-2461
CrossRef Pubmed Google scholar
[34]
Sahoo, D., Dill, D. L., Tibshirani, R. and Plevritis, S. K. (2007) Extracting binary signals from microarray time-course data. Nucleic Acids Res., 35, 3705-3712
CrossRef Pubmed Google scholar
[35]
Sinha, S., Tsang, E. K., Zeng, H., Meister, M. and Dill, D. L. (2014) Mining TCGA data using Boolean implications. PLoS One, 9, e102119
CrossRef Pubmed Google scholar
[36]
Fuhrman, J. A., Hewson, I., Schwalbach, M. S., Steele, J. A., Brown, M. V. and Naeem, S. (2006) Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl. Acad. Sci. USA, 103, 13104-13109
CrossRef Pubmed Google scholar
[37]
Vigil, P., Countway, P. D., Rose, J., Lonsdale, D. J. and Gobler, C. J. (2009) Rapid shifts in dominant taxa among microbial eukaryotes in estuarine ecosystems. Aquat. Microb. Ecol., 54, 83-100

ACKNOWLEDGEMENTS

This research was partially supported by the National Basic Research Program of China (2012CB316504), the National High Technology Research and Development Program of China (2012AA020401), the National Natural Science Foundation of China (61175002), the Recruitment Program of Global Experts of China, and Tsinghua National Laboratory for Information Science and Technology (TNList). The authors declare that they have no competing interests.
COMPLIANCE WITH ETHICS GUIDELINES
The authors Congmin Zhu, Rui Jiang and Ting Chen declare that they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2475 KB)

Accesses

Citations

Detail

Sections
Recommended

/