Constructing a Boolean implication network to study the interactions between environmental factors and OTUs
Congmin Zhu, Rui Jiang, Ting Chen
Constructing a Boolean implication network to study the interactions between environmental factors and OTUs
Mining relationships between microbes and the environment they live in are crucial to understand the intrinsic mechanisms that govern cycles of carbon, nitrogen and energy in a microbial community. Building upon next-generation sequencing technology, the selective capture of 16S rRNA genes has enabled the study of co-occurrence patterns of microbial species from the viewpoint of complex networks, yielding successful descriptions of phenomena exhibited in a microbial community. However, since the effects of such environmental factors as temperature or soil conditions on microbes are complex, reliance on the analysis of co-occurrence networks alone cannot elucidate such complicated effects underlying microbial communities. In this study, we apply a statistical method, which is called Boolean implications for metagenomic studies (BIMS) for extracting Boolean implications (IF-THEN relationships) to capture the effects of environmental factors on microbial species based on 16S rRNA sequencing data. We first demonstrate the power and effectiveness of BIMS through comprehensive simulation studies and then apply it to a 16S rRNA sequencing dataset of real marine microbes. Based on a total of 6,514 pairwise relationships identified at a low false discovery rate (FDR) of 0.01, we construct a Boolean implication network between operational taxonomic units (OTUs) and environmental factors. Relationships in this network are supported by literature, and, most importantly, they bring biological insights into the effects of environmental factors on microbes. We next apply BIMS to detect three-way relationships and show the possibility of using this strategy to explain more complex relationships within a microbial community.
Boolean implication / metagenome / marine OTUs / environmental factors
[1] |
Wooley, J. C., Godzik, A. and Friedberg, I. (2010) A primer on metagenomics. PLOS Comput. Biol., 6, e1000667
CrossRef
Pubmed
Google scholar
|
[2] |
Chaffron, S., Rehrauer, H., Pernthaler, J. and von Mering, C. (2010) A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res., 20, 947-959
CrossRef
Pubmed
Google scholar
|
[3] |
Amann, R. I., Ludwig, W. and Schleifer, K. H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 59, 143-169
Pubmed
|
[4] |
Pace, N. R. (1997) A molecular view of microbial diversity and the biosphere. Science, 276, 734-740
CrossRef
Pubmed
Google scholar
|
[5] |
Rappé, M. S. and Giovannoni, S. J. (2003) The uncultured microbial majority. Annu. Rev. Microbiol., 57, 369-394
CrossRef
Pubmed
Google scholar
|
[6] |
King, A. J., Farrer, E. C., Suding, K. N. and Schmidt, S. K. (2012) Co-occurrence patterns of plants and soil bacteria in the high-alpine subnival zone track environmental harshness. Front. Microbiol, 3, 347
CrossRef
Pubmed
Google scholar
|
[7] |
Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., Loiacono, K. A., Lynch, B. A., MacNeil, I. A., Minor, C.,
CrossRef
Pubmed
Google scholar
|
[8] |
Voget, S., Leggewie, C., Uesbeck, A., Raasch, C., Jaeger, K. E. and Streit, W. R. (2003) Prospecting for novel biocatalysts in a soil metagenome. Appl. Environ. Microbiol., 69, 6235-6242
CrossRef
Pubmed
Google scholar
|
[9] |
Nautiyal, C. S., Chauhan, P. S. and Nene, Y. L. (2007) Medicinal smoke reduces airborne bacteria. J. Ethnopharmacol., 114, 446-451
CrossRef
Pubmed
Google scholar
|
[10] |
Ortiz, G., Yagüe, G., Segovia, M. and Catalán, V. (2009) A study of air microbe levels in different areas of a hospital. Curr. Microbiol., 59, 53-58
CrossRef
Pubmed
Google scholar
|
[11] |
Martinez, A., Tyson, G. W. and Delong, E. F. (2010) Widespread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomic analyses. Environ. Microbiol., 12, 222-238
CrossRef
Pubmed
Google scholar
|
[12] |
Steele, J. A., Countway, P. D., Xia, L., Vigil, P. D., Beman, J. M., Kim, D. Y., Chow, C. E., Sachdeva, R., Jones, A. C., Schwalbach, M. S.,
CrossRef
Pubmed
Google scholar
|
[13] |
Stein, J. L., Marsh, T. L., Wu, K. Y., Shizuya, H. and DeLong, E. F. (1996) Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J. Bacteriol., 178, 591-599
Pubmed
|
[14] |
Tseng, C. H. and Tang, S. L. (2014) Marine microbial metagenomics: from individual to the environment. Int. J. Mol. Sci., 15, 8878-8892
CrossRef
Pubmed
Google scholar
|
[15] |
Woyke, T., Xie, G., Copeland, A., González, J. M., Han, C., Kiss, H., Saw, J. H., Senin, P., Yang, C., Chatterji, S.,
Pubmed
|
[16] |
Manichanh, C., Rigottier-Gois, L., Bonnaud, E., Gloux, K., Pelletier, E., Frangeul, L., Nalin, R., Jarrin, C., Chardon, P., Marteau, P.,
CrossRef
Pubmed
Google scholar
|
[17] |
Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen,D.,
CrossRef
Pubmed
Google scholar
|
[18] |
Cho, I. and Blaser, M. J. (2012) The human microbiome: at the interface of health and disease. Nat. Rev. Genet., 13, 260-270
Pubmed
|
[19] |
Rasheed, Z., Rangwala, H. and Barbará, D. (2013) 16S rRNA metagenome clustering and diversity estimation using locality sensitive hashing. BMC Syst. Biol., 7, S11
CrossRef
Pubmed
Google scholar
|
[20] |
Eren, A. M., Maignien, L., Sul, W. J., Murphy, L. G. and Grim, S. L. (2013) Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evol., 4
|
[21] |
Chen, W., Zhang, C. K., Cheng, Y., Zhang, S. and Zhao, H. (2013) A comparison of methods for clustering 16S rRNA sequences into OTUs. PLoS One, 8, e70837
CrossRef
Pubmed
Google scholar
|
[22] |
Hao, X., Jiang, R. and Chen, T. (2011) Clustering 16S rRNA for OTU prediction: a method of unsupervised Bayesian clustering. Bioinformatics, 27, 611-618
CrossRef
Pubmed
Google scholar
|
[23] |
Schloss, P. D. and Handelsman, J. (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol., 71, 1501-1506
CrossRef
Pubmed
Google scholar
|
[24] |
Huse, S. M., Welch, D. M., Morrison, H. G. and Sogin, M. L. (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol., 12, 1889-1898
CrossRef
Pubmed
Google scholar
|
[25] |
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J.,
CrossRef
Pubmed
Google scholar
|
[26] |
Assenov, Y., Ramírez, F., Schelhorn, S. E., Lengauer, T. and Albrecht, M. (2008) Computing topological parameters of biological networks. Bioinformatics, 24, 282-284
CrossRef
Pubmed
Google scholar
|
[27] |
Li, W. and Godzik, A. (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22, 1658-1659
CrossRef
Pubmed
Google scholar
|
[28] |
Li, W., Jaroszewski, L. and Godzik, A. (2001) Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics, 17, 282-283
CrossRef
Pubmed
Google scholar
|
[29] |
Sahoo, D., Dill, D. L., Gentles, A. J., Tibshirani, R. and Plevritis, S. K. (2008) Boolean implication networks derived from large scale, whole genome microarray datasets. Genome Biol., 9, R157
CrossRef
Pubmed
Google scholar
|
[30] |
Watts, D. J. and Strogatz, S. H. (1998) Collective dynamics of ‘small-world’ networks. Nature, 393, 440-442
CrossRef
Pubmed
Google scholar
|
[31] |
Montoya, J. M., Pimm, S. L. and Solé, R. V. (2006) Ecological networks and their fragility. Nature, 442, 259-264
CrossRef
Pubmed
Google scholar
|
[32] |
Timothy Pennington, J. and Chavez, F. P. (2000) Seasonal fluctuations of temperature, salinity, nitrate, chlorophyll and primary production at station H3/M1 over 1989-1996 in Monterey Bay, California. Deep Sea Res. Part II Top. Stud. Oceanogr., 47, 947-973
CrossRef
Google scholar
|
[33] |
Edgar, R. C. (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460-2461
CrossRef
Pubmed
Google scholar
|
[34] |
Sahoo, D., Dill, D. L., Tibshirani, R. and Plevritis, S. K. (2007) Extracting binary signals from microarray time-course data. Nucleic Acids Res., 35, 3705-3712
CrossRef
Pubmed
Google scholar
|
[35] |
Sinha, S., Tsang, E. K., Zeng, H., Meister, M. and Dill, D. L. (2014) Mining TCGA data using Boolean implications. PLoS One, 9, e102119
CrossRef
Pubmed
Google scholar
|
[36] |
Fuhrman, J. A., Hewson, I., Schwalbach, M. S., Steele, J. A., Brown, M. V. and Naeem, S. (2006) Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl. Acad. Sci. USA, 103, 13104-13109
CrossRef
Pubmed
Google scholar
|
[37] |
Vigil, P., Countway, P. D., Rose, J., Lonsdale, D. J. and Gobler, C. J. (2009) Rapid shifts in dominant taxa among microbial eukaryotes in estuarine ecosystems. Aquat. Microb. Ecol., 54, 83-100
|
/
〈 | 〉 |