Modeling stochastic phenotype switching and bet-hedging in bacteria: stochastic nonlinear dynamics and critical state identification

Chen Jia, Minping Qian, Yu Kang, Daquan Jiang

PDF(2124 KB)
PDF(2124 KB)
Quant. Biol. ›› 2014, Vol. 2 ›› Issue (3) : 110-125. DOI: 10.1007/s40484-014-0035-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Modeling stochastic phenotype switching and bet-hedging in bacteria: stochastic nonlinear dynamics and critical state identification

Author information +
History +

Abstract

Fluctuating environments pose tremendous challenges to bacterial populations. It is observed in numerous bacterial species that individual cells can stochastically switch among multiple phenotypes for the population to survive in rapidly changing environments. This kind of phenotypic heterogeneity with stochastic phenotype switching is generally understood to be an adaptive bet-hedging strategy. Mathematical models are essential to gain a deeper insight into the principle behind bet-hedging and the pattern behind experimental data. Traditional deterministic models cannot provide a correct description of stochastic phenotype switching and bet-hedging, and traditional Markov chain models at the cellular level fail to explain their underlying molecular mechanisms. In this paper, we propose a nonlinear stochastic model of multistable bacterial systems at the molecular level. It turns out that our model not only provides a clear description of stochastic phenotype switching and bet-hedging within isogenic bacterial populations, but also provides a deeper insight into the analysis of multidimensional experimental data. Moreover, we use some deep mathematical theories to show that our stochastic model and traditional Markov chain models are essentially consistent and reflect the dynamic behavior of the bacterial system at two different time scales. In addition, we provide a quantitative characterization of the critical state of multistable bacterial systems and develop an effective data-driven method to identify the critical state without resorting to specific mathematical models.

Graphical abstract

Keywords

phenotypic heterogeneity / phenotypic variation / multistability / gene network / stochastic gene expression

Cite this article

Download citation ▾
Chen Jia, Minping Qian, Yu Kang, Daquan Jiang. Modeling stochastic phenotype switching and bet-hedging in bacteria: stochastic nonlinear dynamics and critical state identification. Quant. Biol., 2014, 2(3): 110‒125 https://doi.org/10.1007/s40484-014-0035-5

References

[1]
Kussell, E. and Leibler, S. (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science, 309, 2075-2078
CrossRef Pubmed Google scholar
[2]
Smits, W. K., Kuipers, O. P. and Veening, J. W. (2006) Phenotypic variation in bacteria: the role of feedback regulation. Nat. Rev. Microbiol., 4, 259-271
CrossRef Pubmed Google scholar
[3]
Dubnau, D. and Losick, R. (2006) Bistability in bacteria. Mol. Microbiol., 61, 564-572
CrossRef Pubmed Google scholar
[4]
Avery, S. V. (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Microbiol., 4, 577-587
CrossRef Pubmed Google scholar
[5]
Dhar, N. and McKinney, J. D. (2007) Microbial phenotypic heterogeneity and antibiotic tolerance. Curr. Opin. Microbiol., 10, 30-38
CrossRef Pubmed Google scholar
[6]
Lu, T., Shen, T., Bennett, M. R., Wolynes, P. G. and Hasty, J. (2007) Phenotypic variability of growing cellular populations. Proc. Natl. Acad. Sci. USA, 104, 18982-18987
CrossRef Pubmed Google scholar
[7]
Veening, J. W., Smits, W. K. and Kuipers, O. P. (2008) Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol., 62, 193-210
CrossRef Pubmed Google scholar
[8]
Fraser, D. and Kaern, M. (2009) A chance at survival: gene expression noise and phenotypic diversification strategies. Mol. Microbiol., 71, 1333-1340
CrossRef Pubmed Google scholar
[9]
Jablonka, E. and Raz, G. (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol., 84, 131-176
CrossRef Pubmed Google scholar
[10]
Snijder, B. and Pelkmans, L. (2011) Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell Biol., 12, 119-125
CrossRef Pubmed Google scholar
[11]
Mao, J., Blanchard, A. E. and Lu, T. (2014) Slow and steady wins the race: A bacterial exploitative competition strategy in fluctuating environments. ACS Synth. Biol.
CrossRef Google scholar
[12]
Rulands, S., Jahn, D. and Frey, E. (2014) Specialization and bet hedging in heterogeneous populations. Phys. Rev. Lett., 113, 108102
CrossRef Pubmed Google scholar
[13]
Acar, M., Mettetal, J. T. and van Oudenaarden, A. (2008) Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet., 40, 471-475
CrossRef Pubmed Google scholar
[14]
Salathé, M., Van Cleve, J. and Feldman, M. W. (2009) Evolution of stochastic switching rates in asymmetric fitness landscapes. Genetics, 182, 1159-1164
CrossRef Pubmed Google scholar
[15]
Leisner, M., Stingl, K., Frey, E. and Maier, B. (2008) Stochastic switching to competence. Curr. Opin. Microbiol., 11, 553-559
CrossRef Pubmed Google scholar
[16]
Gaál, B., Pitchford, J. W. and Wood, A. J. (2010) Exact results for the evolution of stochastic switching in variable asymmetric environments. Genetics, 184, 1113-1119
CrossRef Pubmed Google scholar
[17]
Libby E, Rainey PB (2011) Exclusion rules, bottlenecks and the evolution of stochastic phenotype switching. P. Roy. Soc. B-Biol. Sci., 278: 3574-3583
[18]
Rainey, P. B., Beaumont, H. J., Ferguson, G. C., Gallie, J., Kost, C., Libby, E. and Zhang, X. X. (2011) The evolutionary emergence of stochastic phenotype switching in bacteria. Microb. Cell Fact., 10, S14
CrossRef Pubmed Google scholar
[19]
Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. and Van Oudenaarden, A. (2004) Multistability in the lactose utilization network of Escherichia coli. Nature, 427, 737-740
CrossRef Pubmed Google scholar
[20]
Süel, G. M., Garcia-Ojalvo, J., Liberman, L. M. and Elowitz, M. B. (2006) An excitable gene regulatory circuit induces transient cellular differentiation. Nature, 440, 545-550
CrossRef Pubmed Google scholar
[21]
Tsang, J. and Van Oudenaarden, A. (2006) Exciting fluctuations: monitoring competence induction dynamics at the single-cell level. Mol. Syst. Biol., 2, 0025
CrossRef Pubmed Google scholar
[22]
Schultz, D., Ben Jacob, E., Onuchic, J. N. and Wolynes, P. G. (2007) Molecular level stochastic model for competence cycles in Bacillus subtilis. Proc. Natl. Acad. Sci. USA, 104, 17582-17587
CrossRef Pubmed Google scholar
[23]
Sonenshein, A.L., Hoch, J.A. and Losick R. (2002) Bacillus subtilis and its closest relatives: from genes to cells Washington: American Society for Microbiology.
[24]
Errington, J. (2003) Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol., 1, 117-126
CrossRef Pubmed Google scholar
[25]
Morohashi, M., Ohashi, Y., Tani, S., Ishii, K., Itaya, M., Nanamiya, H., Kawamura, F., Tomita, M. and Soga, T. (2007) Model-based definition of population heterogeneity and its effects on metabolism in sporulating Bacillus subtilis. J. Biochem., 142, 183-191
CrossRef Pubmed Google scholar
[26]
de Jong, I. G., Veening, J. W. and Kuipers, O. P. (2010) Heterochronic phosphorelay gene expression as a source of heterogeneity in Bacillus subtilis spore formation. J. Bacteriol., 192, 2053-2067
CrossRef Pubmed Google scholar
[27]
Sureka K., Ghosh, B., Dasugpta, A., Basu J., Kundu, M. and Bose Z., (2008) Positive feedback and noise activate the stringent response regulator rel in mycobacteria. PLoS One3: e1771.
[28]
Gefen, O. and Balaban, N. Q. (2009) The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol. Rev., 33, 704-717
CrossRef Pubmed Google scholar
[29]
Ghosh, S., Sureka, K., Ghosh, B., Bose, I., Basu, J. and Kundu, M. (2011) Phenotypic heterogeneity in mycobacterial stringent response. BMC Syst. Biol., 5, 18
CrossRef Pubmed Google scholar
[30]
Veening, J. W., Stewart, E. J., Berngruber, T. W., Taddei, F., Kuipers, O. P. and Hamoen, L. W. (2008) Bet-hedging and epigenetic inheritance in bacterial cell development. Proc. Natl. Acad. Sci. USA., 105, 4393-4398
CrossRef Pubmed Google scholar
[31]
Beaumont, H. J., Gallie, J., Kost, C., Ferguson, G. C. and Rainey, P. B. (2009) Experimental evolution of bet hedging. Nature, 462, 90-93
CrossRef Pubmed Google scholar
[32]
Wolf, D. M., Vazirani, V. V. and Arkin, A. P. (2005) Diversity in times of adversity: probabilistic strategies in microbial survival games. J. Theor. Biol., 234, 227-253
CrossRef Pubmed Google scholar
[33]
Gupta, P. B., Fillmore, C. M., Jiang, G., Shapira, S. D., Tao, K., Kuperwasser, C. and Lander, E. S. (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell, 146, 633-644
CrossRef Pubmed Google scholar
[34]
Zhou D, Wu D, Li Z, Qian M, Zhang MQ (2013) Population dynamics of cancer cells with cell state conversions. Quant. Biol. 1, 1-8.
[35]
Karmakar, R. and Bose, I. (2007) Positive feedback, stochasticity and genetic competence. Phys. Biol., 4, 29-37
CrossRef Pubmed Google scholar
[36]
Mitrophanov, A. Y. and Groisman, E. A. (2008) Positive feedback in cellular control systems. BioEssays, 30, 542-555
CrossRef Pubmed Google scholar
[37]
Mantzaris, N. V. (2007) From single-cell genetic architecture to cell population dynamics: quantitatively decomposing the effects of different population heterogeneity sources for a genetic network with positive feedback architecture. Biophys. J., 92, 4271-4288
CrossRef Pubmed Google scholar
[38]
Vellela, M. and Qian, H. (2009) Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited. J. R. Soc. Interface, 6, 925-940
CrossRef Pubmed Google scholar
[39]
Qian, H. and Bishop, L. M. (2010) The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks. Int. J. Mol. Sci., 11, 3472-3500
CrossRef Pubmed Google scholar
[40]
Qian, H. (2011) Nonlinear stochastic dynamics of mesoscopic homogeneous biochemical reaction systemsłan analytical theory. Nonlinearity, 24, R19-R49
CrossRef Google scholar
[41]
Ge, H. and Qian, H. (2011) Non-equilibrium phase transition in mesoscopic biochemical systems: from stochastic to nonlinear dynamics and beyond. J. R. Soc. Interface, 8, 107-116
CrossRef Pubmed Google scholar
[42]
Qian, H. (2012) Cooperativity in cellular biochemical processes: noise-enhanced sensitivity, fluctuating enzyme, bistability with nonlinear feedback, and other mechanisms for sigmoidal responses. Annu. Rev. Biophys., 41, 179-204
CrossRef Pubmed Google scholar
[43]
Qian, H. and Ge, H. (2012) Mesoscopic biochemical basis of isogenetic inheritance and canalization: stochasticity, nonlinearity, and emergent landscape. Mol Cell Biomech, 9, 1-30
Pubmed
[44]
McAdams, H. H. and Arkin, A. (1997) Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA., 94, 814-819
CrossRef Pubmed Google scholar
[45]
Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002) Stochastic gene expression in a single cell. Science, 297, 1183-1186
CrossRef Pubmed Google scholar
[46]
Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. and van Oudenaarden, A. (2002) Regulation of noise in the expression of a single gene. Nat. Genet., 31, 69-73
CrossRef Pubmed Google scholar
[47]
Paulsson, J. (2004) Summing up the noise in gene networks. Nature, 427, 415-418
CrossRef Pubmed Google scholar
[48]
Kaern, M., Elston, T. C., Blake, W. J. and Collins, J. J. (2005) Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet., 6, 451-464
CrossRef Pubmed Google scholar
[49]
Raser, J. M. and O’Shea, E. K. (2005) Noise in gene expression: origins, consequences, and control. Science, 309, 2010-2013
CrossRef Pubmed Google scholar
[50]
Cai, L., Friedman, N. and Xie, X. S. (2006) Stochastic protein expression in individual cells at the single molecule level. Nature, 440, 358-362
CrossRef Pubmed Google scholar
[51]
Yu, J., Xiao, J., Ren, X., Lao, K. and Xie, X. S. (2006) Probing gene expression in live cells, one protein molecule at a time. Science, 311, 1600-1603
CrossRef Pubmed Google scholar
[52]
Xie, X. S., Choi, P. J., Li, G. W., Lee, N. K. and Lia, G. (2008) Single-molecule approach to molecular biology in living bacterial cells. Annu. Rev. Biophys., 37, 417-444
CrossRef Pubmed Google scholar
[53]
Sanchez, A., Choubey, S. and Kondev, J. (2013) Regulation of noise in gene expression. Annu. Rev. Biophys., 42, 469-491
CrossRef Pubmed Google scholar
[54]
Freidlin, M. I., Szücs, J. and Wentzell, A. D. (2012) Random perturbations of dynamical systems, New York: Springer-Verlag
[55]
Kim, D., Rath, O., Kolch, W. and Cho, K. H. (2007) A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK pathways. Oncogene, 26, 4571-4579
CrossRef Pubmed Google scholar
[56]
Kellershohn, N. and Laurent, M. (2001) Prion diseases: dynamics of the infection and properties of the bistable transition. Biophys. J., 81, 2517-2529
CrossRef Pubmed Google scholar
[57]
Olivieri, E. and Vares, M. E. (2005) Large deviations and metastability. UK: Cambridge University Press.
[58]
Liu R, Li M.Y., Liu Z.P., Wu J.R., Chen L.N. and Aihara K. (2012) Identifying critical transitions and their leading biomolecular networks in complex diseases. Sci. Rep.,
CrossRef Google scholar
[59]
Dai, L., Vorselen, D., Korolev, K. S. and Gore, J. (2012) Generic indicators for loss of resilience before a tipping point leading to population collapse. Science, 336, 1175-1177
CrossRef Pubmed Google scholar
[60]
Angeli, D., Ferrell, J. E. Jr and Sontag, E. D. (2004) Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. USA., 101, 1822-1827
CrossRef Pubmed Google scholar
[61]
Gouzé, J. L. (1998) Positive and negative circuits in dynamical systems. J. Biol. Syst., 6, 11-15
CrossRef Google scholar
[62]
Snoussi, E. H. (1998) Necessary conditions for multistationarity and stable periodicity. J. Biol. Syst., 6, 3-9
CrossRef Google scholar
[63]
Cinquin, O. and Demongeot, J. (2002) Positive and negative feedback: striking a balance between necessary antagonists. J. Theor. Biol., 216, 229-241
CrossRef Pubmed Google scholar
[64]
Gillespie, D. T. (1992) A rigorous derivation of the chemical master equation. Physica A, 188, 404-425
CrossRef Google scholar
[65]
Kurtz, T. G. (1970) Solutions of ordinary differential equations as limits of pure jump markov processes. J. Appl. Probab., 7, 49-58
CrossRef Google scholar
[66]
Kurtz, T. G. (1971) Limit theorems for sequences of jump markov processes approximating ordinary differential processes. J. Appl. Probab., 8, 344-356
CrossRef Google scholar
[67]
Kurtz, T. G. (1972) The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys., 57, 2976-2978
CrossRef Google scholar
[68]
Gillespie, D. T. (2000) The chemical langevin equation. J. Chem. Phys., 113, 297-306
CrossRef Google scholar
[69]
Rao, C. V., Wolf, D. M. and Arkin, A. P. (2002) Control, exploitation and tolerance of intracellular noise. Nature, 420, 231-237
CrossRef Pubmed Google scholar
[70]
Wilkinson, D. J. (2009) Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet., 10, 122-133
CrossRef Pubmed Google scholar
[71]
Meister A, Du C, Li YH, Wong WH (2014) Modeling stochastic noise in gene regulatory systems. Quant. Biol.: 1-29
[72]
Yao, G., Lee, T. J., Mori, S., Nevins, J. R. and You, L. (2008) A bistable Rb-E2F switch underlies the restriction point. Nat. Cell Biol., 10, 476-482
CrossRef Pubmed Google scholar
[73]
Ferrell, J. E. Jr and Machleder, E. M. (1998) The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science, 280, 895-898
CrossRef Pubmed Google scholar
[74]
Xiong, W. and Ferrell, J. E. Jr. (2003) A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature, 426, 460-465
CrossRef Pubmed Google scholar
[75]
Corson, F. and Siggia, E. D. (2012) Geometry, epistasis, and developmental patterning. Proc. Natl. Acad. Sci. USA., 109, 5568-5575
CrossRef Pubmed Google scholar
[76]
Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X., Yan, J., (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol., 20, 1131-1139
CrossRef Pubmed Google scholar
[77]
Eissing, T., Conzelmann, H., Gilles, E. D., Allgöwer, F., Bullinger, E. and Scheurich, P. (2004) Bistability analyses of a caspase activation model for receptor-induced apoptosis. J. Biol. Chem., 279, 36892-36897
CrossRef Pubmed Google scholar
[78]
Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. and Sorger, P. K. (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature, 459, 428-432
CrossRef Pubmed Google scholar

ACKNOWLEDGMENTS

The authors gratefully acknowledge Prof. Michael S.Waterman at the University of Southern California and Prof. Michael Q. Zhang at Tsinghua University for stimulating discussions. This work is supported by NSFC ( Nos. 11271029 and 11171024).
COMPLIANCE WITH ETHICS GUIDELINES
The authors Chen Jia, Minping Qian, Yu Kang and Daquan Jiang declare that they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2124 KB)

Accesses

Citations

Detail

Sections
Recommended

/