Target specificity of the CRISPR-Cas9 system

Xuebing Wu, Andrea J. Kriz, Phillip A. Sharp

PDF(523 KB)
PDF(523 KB)
Quant. Biol. ›› 2014, Vol. 2 ›› Issue (2) : 59-70. DOI: 10.1007/s40484-014-0030-x
REVIEW
REVIEW

Target specificity of the CRISPR-Cas9 system

Author information +
History +

Abstract

The CRISPR-Cas9 system, naturally a defense mechanism in prokaryotes, has been repurposed as an RNA-guided DNA targeting platform. It has been widely used for genome editing and transcriptome modulation, and has shown great promise in correcting mutations in human genetic diseases. Off-target effects are a critical issue for all of these applications. Here we review the current status on the target specificity of the CRISPR-Cas9 system.

Graphical abstract

Keywords

CRISPR / Cas9 / target specificity / off-targets / genome engineering

Cite this article

Download citation ▾
Xuebing Wu, Andrea J. Kriz, Phillip A. Sharp. Target specificity of the CRISPR-Cas9 system. Quant. Biol., 2014, 2(2): 59‒70 https://doi.org/10.1007/s40484-014-0030-x

References

[1]
Marraffini, L. A. and Sontheimer, E. J. (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet., 11, 181–190
CrossRef Pubmed Google scholar
[2]
Barrangou, R. and Marraffini, L. A. (2014) CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol. Cell, 54, 234–244
CrossRef Pubmed Google scholar
[3]
Deveau, H., Garneau, J. E. and Moineau, S. (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol., 64, 475–493
CrossRef Pubmed Google scholar
[4]
Horvath, P. and Barrangou, R. (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science, 327, 167–170
CrossRef Pubmed Google scholar
[5]
Van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M. and Brouns, S. J. J. (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci., 34, 401–407
CrossRef Pubmed Google scholar
[6]
Terns, M. P. and Terns, R. M. (2011) CRISPR-based adaptive immune systems. Curr. Opin. Microbiol., 14, 321–327
CrossRef Pubmed Google scholar
[7]
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. and Charpentier, E. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821
CrossRef Pubmed Google scholar
[8]
Mali, P., Esvelt, K. M. and Church, G. M. (2013) Cas9 as a versatile tool for engineering biology. Nat. Methods, 10, 957–963
CrossRef Pubmed Google scholar
[9]
Sander, J. D. and Joung, J. K. (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol., 32, 347–355
CrossRef Pubmed Google scholar
[10]
Zhang, F., Wen, Y. and Guo, X. (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum. Mol. Genet., doi: 10.1093/hmg/ddu125
Pubmed
[11]
Hsu, P. D., Lander, E. S. and Zhang, F. (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157, 1262–1278
CrossRef Pubmed Google scholar
[12]
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., (2013) Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823
CrossRef Pubmed Google scholar
[13]
Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E. and Church, G. M. (2013) RNA-guided human genome engineering via Cas9. Science, 339, 823–826
CrossRef Pubmed Google scholar
[14]
Yang, H., Wang, H., Shivalila, C. S., Cheng, A. W., Shi, L. and Jaenisch, R. (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 154, 1370–1379
CrossRef Pubmed Google scholar
[15]
Jao, L.E., Wente, S. R. and Chen, W. (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. USA, 110, 13904–13909
CrossRef Pubmed Google scholar
[16]
Canver, M. C., Bauer, D. E., Dass, A., Yien, Y. Y., Chung, J., Masuda, T., Maeda, T., Paw, B. H. and Orkin, S. H. (2014) Characterization of genomic deletion efficiency mediated by CRISPR/Cas9 in mammalian cells. J. Biol. Chem., doi: 10.1074/ibc.M114.564625
Pubmed
[17]
Xiao, A., Wang, Z., Hu, Y., Wu, Y., Luo, Z., Yang, Z., Zu, Y., Li, W., Huang, P., Tong, X., (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res., 41, e141
CrossRef Pubmed Google scholar
[18]
Torres, R., Martin, M. C., Garcia, A., Cigudosa, J. C., Ramirez, J. C. and Rodriguez-Perales, S. (2014) Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat. Commun., 5, 3964
CrossRef Pubmed Google scholar
[19]
Auer, T. O., Duroure, K., De Cian, A., Concordet, J.-P. and Del Bene, F. (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res., 24, 142–153
CrossRef Pubmed Google scholar
[20]
Hruscha, A., Krawitz, P., Rechenberg, A., Heinrich, V., Hecht, J., Haass, C. and Schmid, B. (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development, 140, 4982–4987
CrossRef Pubmed Google scholar
[21]
Schwank, G., Koo, B.-K., Sasselli, V., Dekkers, J. F., Heo, I., Demircan, T., Sasaki, N., Boymans, S., Cuppen, E., van der Ent, C. K., (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 13, 653–658
CrossRef Pubmed Google scholar
[22]
Wu, Y., Liang, D., Wang, Y., Bai, M., Tang, W., Bao, S., Yan, Z., Li, D. and Li, J. (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 13, 659–662
CrossRef Pubmed Google scholar
[23]
Yin, H., Xue, W., Chen, S., Bogorad, R. L., Benedetti, E., Grompe, M., Koteliansky, V., Sharp, P. A., Jacks, T. and Anderson, D. G. (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol., 32, 551–553
CrossRef Pubmed Google scholar
[24]
Larson, M. H., Gilbert, L. A., Wang, X., Lim, W. A., Weissman, J. S. and Qi, L. S. (2013) CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc., 8, 2180–2196
CrossRef Pubmed Google scholar
[25]
Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., Doudna, J. A., (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154, 442–451
CrossRef Pubmed Google scholar
[26]
Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P. and Lim, W. A. (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183
CrossRef Pubmed Google scholar
[27]
Cheng, A. W., Wang, H., Yang, H., Shi, L., Katz, Y., Theunissen, T. W., Rangarajan, S., Shivalila, C. S., Dadon, D. B. and Jaenisch, R. (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res., 23, 1163–1171
CrossRef Pubmed Google scholar
[28]
Kearns, N. A., Genga, R. M. J., Enuameh, M. S., Garber, M., Wolfe, S. A. and Maehr, R. (2014) Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development, 141, 219–223
CrossRef Pubmed Google scholar
[29]
Mali, P., Aach, J., Stranges, P. B., Esvelt, K. M., Moosburner, M., Kosuri, S., Yang, L. and Church, G. M. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol., 31, 833–838
CrossRef Pubmed Google scholar
[30]
Farzadfard, F., Perli, S. D. and Lu, T. K. (2013) Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol., 2, 604–613
Pubmed
[31]
Chen, B., Gilbert, L. A., Cimini, B. A., Schnitzbauer, J., Zhang, W., Li, G.-W., Park, J., Blackburn, E. H., Weissman, J. S., Qi, L. S., (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 155, 1479–1491
CrossRef Pubmed Google scholar
[32]
Qiu, P., Shandilya, H., D’Alessio, J. M., O’Connor, K., Durocher, J. and Gerard, G. F. (2004) Mutation detection using Surveyor nuclease. Biotechniques, 36, 702–707
Pubmed
[33]
Mashal, R. D., Koontz, J. and Sklar, J. (1995) Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat. Genet., 9, 177–183
CrossRef Pubmed Google scholar
[34]
Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., Li, Y., Fine, E. J., Wu, X., Shalem, O., (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol., 31, 827–832
CrossRef Pubmed Google scholar
[35]
Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K. and Sander, J. D. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol., 31, 822–826
CrossRef Pubmed Google scholar
[36]
Carroll, D. (2013) Staying on target with CRISPR-Cas. Nat. Biotechnol., 31, 807–809
CrossRef Google scholar
[37]
Wu, X., Scott, D. A., Kriz, A. J., Chiu, A. C., Hsu, P. D., Dadon, D. B., Cheng, A. W., Trevino, A. E., Konermann, S., Chen, S., (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol., 32, 670–676
Pubmed
[38]
Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A. and Liu, D. R. (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol., 31, 839–843
CrossRef Pubmed Google scholar
[39]
Guilinger, J. P., Pattanayak, V., Reyon, D., Tsai, S. Q., Sander, J. D., Joung, J. K. and Liu, D. R. (2014) Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat. Methods, 11, 429–435
CrossRef Pubmed Google scholar
[40]
Pattanayak, V., Ramirez, C. L., Joung, J. K. and Liu, D. R. (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat. Methods, 8, 765–770
CrossRef Pubmed Google scholar
[41]
Gabriel, R., Lombardo, A., Arens, A., Miller, J. C., Genovese, P., Kaeppel, C., Nowrouzi, A., Bartholomae, C. C., Wang, J., Friedman, G., (2011) An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Biotechnol., 29, 816–823
CrossRef Pubmed Google scholar
[42]
Sander, J. D., Ramirez, C. L., Linder, S. J., Pattanayak, V., Shoresh, N., Ku, M., Foden, J. A., Reyon, D., Bernstein, B. E., Liu, D. R., (2013) In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res., 41, e181
CrossRef Pubmed Google scholar
[43]
Cho, S. W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S. and Kim, J. S. (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res., 24, 132–141
CrossRef Pubmed Google scholar
[44]
Kuscu, C., Arslan, S., Singh, R., Thorpe, J. and Adli, M. (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol., 32, 677–683
Pubmed
[45]
O’Geen H, Henry IM, Bhakta MS, Meckler JF, Segal DJ. (2014) A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. BioRxiv, Cold Spring Harbor Labs, doi: http://dx.doi.org/10.1101/005413
[46]
Chailleux, C., Aymard, F., Caron, P., Daburon, V., Courilleau, C., Canitrot, Y., Legube, G. and Trouche, D. (2014) Quantifying DNA double-strand breaks induced by site-specific endonucleases in living cells by ligation-mediated purification. Nat. Protoc., 9, 517–528
CrossRef Pubmed Google scholar
[47]
Crosetto, N., Mitra, A., Silva, M. J., Bienko, M., Dojer, N., Wang, Q., Karaca, E., Chiarle, R., Skrzypczak, M., Ginalski, K., (2013) Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods, 10, 361–365
CrossRef Pubmed Google scholar
[48]
Chiu, H., Schwartz, H. T., Antoshechkin, I. and Sternberg, P. W. (2013) Transgene-free genome editing in Caenorhabditis elegans using CRISPR-Cas. Genetics, 195, 1167–1171
CrossRef Pubmed Google scholar
[49]
Feng, Z., Mao, Y., Xu, N., Zhang, B., Wei, P., Yang, D.-L., Wang, Z., Zhang, Z., Zheng, R., Yang, L., (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc. Natl. Acad. Sci. USA, 111, 4632–4637
CrossRef Pubmed Google scholar
[50]
Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, H., Xu, N., (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J., doi: 10.1111/pbi.12200
Pubmed
[51]
Veres, A., Gosis, B. S., Ding, Q., Collins, R., Ragavendran, A., Brand, H., Erdin, S., Talkowski, M. E. and Musunuru, K. (2014) Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell, 15, 27–30
CrossRef Pubmed Google scholar
[52]
Smith, C., Gore, A., Yan, W., Abalde-Atristain, L., Li, Z., He, C., Wang, Y., Brodsky, R. A., Zhang, K., Cheng, L., (2014) Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell, 15, 12–13
CrossRef Pubmed Google scholar
[53]
Park, P. J. (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet., 10, 669–680
CrossRef Pubmed Google scholar
[54]
Teytelman, L., Thurtle, D. M., Rine, J. and van Oudenaarden, A. (2013) Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc. Natl. Acad. Sci. USA, 110, 18602–18607
CrossRef Pubmed Google scholar
[55]
Perez-Pinera, P., Kocak, D. D., Vockley, C. M., Adler, A. F., Kabadi, A. M., Polstein, L. R., Thakore, P. I., Glass, K. A., Ousterout, D. G., Leong, K. W., (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods, 10, 973–976
CrossRef Pubmed Google scholar
[56]
Nishimasu, H., Ran, F. A. A., Hsu, P. D. D., Konermann, S., Shehata, S. I. I., Dohmae, N., Ishitani, R., Zhang, F. and Nureki, O. (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156, 935–949
CrossRef Pubmed Google scholar
[57]
Garneau, J. E., Dupuis, M.-È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A. H. and Moineau, S. (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468, 67–71
CrossRef Google scholar
[58]
Zhang, Y., Heidrich, N., Ampattu, B. J., Gunderson, C. W., Seifert, H. S., Schoen, C., Vogel, J. and Sontheimer, E. J. (2013) Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell, 50, 488–503
CrossRef Pubmed Google scholar
[59]
Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. and Doudna, J. A. (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 507, 62–67
CrossRef Pubmed Google scholar
[60]
Ran, F. A., Hsu, P. D., Lin, C.-Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., Zhang, Y., (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154, 1380–1389
CrossRef Pubmed Google scholar
[61]
Lin, Y., Cradick, T. J., Brown, M. T., Deshmukh, H., Ranjan, P., Sarode, N., Wile, B. M., Vertino, P. M., Stewart, F. J. and Bao, G. (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res., 42, 7473–7485
Pubmed
[62]
Jiang, W., Bikard, D., Cox, D., Zhang, F. and Marraffini, L. A. (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol., 31, 233–239
CrossRef Pubmed Google scholar
[63]
Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. and Joung, J. K. (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol., 32, 279–284
CrossRef Pubmed Google scholar
[64]
Nissim, L., Perli, S. D., Fridkin, A., Perez-Pinera, P. and Lu, T. K. (2014) Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell, 54, 698–710
CrossRef Pubmed Google scholar
[65]
Kiani, S., Beal, J., Ebrahimkhani, M. R., Huh, J., Hall, R. N., Xie, Z., Li, Y. and Weiss, R. (2014) CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat. Methods, 11, 723–726
Pubmed
[66]
Kim, S., Kim, D., Cho, S. W., Kim, J. and Kim, J.-S. (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res., 24, 1012–1019
CrossRef Pubmed Google scholar
[67]
Ramakrishna, S., Kwaku Dad, A.-B., Beloor, J., Gopalappa, R., Lee, S.-K. and Kim, H. (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res., 24, 1020–1027
CrossRef Pubmed Google scholar
[68]
Bitinaite, J., Wah, D. A., Aggarwal, A. K. and Schildkraut, I. (1998) FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA, 95, 10570–10575
CrossRef Pubmed Google scholar
[69]
Guilinger, J. P., Thompson, D. B. and Liu, D. R. (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol., 32, 577–582
CrossRef Google scholar
[70]
Tsai, S. Q., Wyvekens, N., Khayter, C., Foden, J. A., Thapar, V., Reyon, D., Goodwin, M. J., Aryee, M. J. and Joung, J. K. (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol., 32, 569–576
CrossRef Pubmed Google scholar
[71]
Ma M, Ye AY, Zheng W, Kong L. (201 3)A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. Biomed Res. Int. 2013, 270805
[72]
Heigwer, F., Kerr, G. and Boutros, M. (2014) E-CRISP: fast CRISPR target site identification. Nat. Methods, 11, 122–123
CrossRef Pubmed Google scholar
[73]
Xiao, A., Cheng, Z., Kong, L., Zhu, Z., Lin, S., Gao, G. (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics
CrossRef Google scholar
[74]
Bae, S., Park, J. and Kim, J.-S. (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics, 30, 1473–1475
CrossRef Pubmed Google scholar
[75]
Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. and Valen, E. (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res., 42, W401–407
Pubmed
[76]
Gratz, S. J., Ukken, F. P., Rubinstein, C. D., Thiede, G., Donohue, L. K., Cummings, A. M. and O’Connor-Giles, K. M. (2014) Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics, 196, 961–971
CrossRef Pubmed Google scholar
[77]
Aach J, Mali P, Church GM. (2014) CasFinder: Flexible algorithm for identifying specific Cas9 targets in genomes. BioRxiv, Cold Spring Harbor Labs, doi: http://dx.doi.org/10.1101/005074
[78]
Xie, S., Shen, B., Zhang, C., Huang, X. and Zhang, Y. (2014) sgRNAcas9: A software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS ONE, 9, e100448
CrossRef Pubmed Google scholar
[79]
Sander, J. D., Zaback, P., Joung, J. K., Voytas, D. F. and Dobbs, D. (2007) Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res., 35, W599-605
CrossRef Pubmed Google scholar
[80]
Sander, J. D., Maeder, M. L., Reyon, D., Voytas, D. F., Joung, J. K. and Dobbs, D. (2010) ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res., 38, W462-468
CrossRef Pubmed Google scholar
[81]
Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J. J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F. J. M., Wolf, Y. I., Yakunin, A. F., (2011) Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol., 9, 467–477
CrossRef Google scholar
[82]
Wang, T., Wei, J. J., Sabatini, D. M. and Lander, E. S. (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343, 80–84
CrossRef Pubmed Google scholar
[83]
Esvelt, K. M., Mali, P., Braff, J. L., Moosburner, M., Yaung, S. J. and Church, G. M. (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods, 10, 1116–1121
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

We would like to thank the Sharp lab members for discussion and critical reading of the manuscript, and M. Lindstrom for assistance on constructing figures. This work was supported by United States Public Health Service grants RO1-GM34277 and R01-CA133404 from the National Institutes of Health (P.A.S.), PO1-CA42063 from the National Cancer Institute (P.A.S.), and partially by Cancer Center Support (core) grant P30-CA14051 from the National Cancer Institute. X.W. is a Howard Hughes Medical Institute International Student Research fellow.
The authors Xuebing Wu, Andrea J. Kriz and Phillip A. Sharp declare that they have no conflict of interests.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(523 KB)

Accesses

Citations

Detail

Sections
Recommended

/