From Phage lambda to human cancer: endogenous molecular-cellular network hypothesis

Gaowei Wang, Xiaomei Zhu, Leroy Hood, Ping Ao

PDF(516 KB)
PDF(516 KB)
Quant. Biol. ›› 2013, Vol. 1 ›› Issue (1) : 32-49. DOI: 10.1007/s40484-013-0007-1
REVIEW
REVIEW

From Phage lambda to human cancer: endogenous molecular-cellular network hypothesis

Author information +
History +

Abstract

Experimental evidences and theoretical analyses have amply suggested that in cancer genesis and progression genetic information is very important but not the whole. Nevertheless, “cancer as a disease of the genome” is still currently the dominant doctrine. With such a background and based on the fundamental properties of biological systems, a new endogenous molecular-cellular network theory for cancer was recently proposed by us. Similar proposals were also made by others. The new theory attempts to incorporate both genetic and environmental effects into one single framework, with the possibility to give a quantitative and dynamical description. It is asserted that the complex regulatory machinery behind biological processes may be modeled by a nonlinear stochastic dynamical system similar to a noise perturbed Morse-Smale system. Both qualitative and quantitative descriptions may be obtained. The dynamical variables are specified by a set of endogenous molecular-cellular agents and the structure of the dynamical system by the interactions among those biological agents. Here we review this theory from a pedagogical angle which emphasizes the role of modularization, hierarchy and autonomous regulation. We discuss how the core set of assumptions is exemplified in detail in one of the simple, important and well studied model organisms, Phage lambda. With this concrete and quantitative example in hand, we show that the application of the hypothesized theory in human cancer, such as hepatocellular carcinoma (HCC), is plausible, and that it may provide a set of new insights on understanding cancer genesis and progression, and on strategies for cancer prevention, cure, and care.

Cite this article

Download citation ▾
Gaowei Wang, Xiaomei Zhu, Leroy Hood, Ping Ao. From Phage lambda to human cancer: endogenous molecular-cellular network hypothesis. Quant Biol, 2013, 1(1): 32‒49 https://doi.org/10.1007/s40484-013-0007-1

References

[1]
Kumar, V., Robbins, S., Zhai, Q. and Chen, J. (2009) Textbook of Pathology. Peking University Medical Press.
[2]
Hajdu, S. I. (2011) A note from history: landmarks in history of cancer, part 1. Cancer, 117, 1097-1102.
CrossRef Pubmed Google scholar
[3]
Ao, P., Galas, D., Hood, L. and Zhu, X. (2008) Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution. Med. Hypotheses, 70, 678-684.
CrossRef Pubmed Google scholar
[4]
Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646-674.
CrossRef Pubmed Google scholar
[5]
Nowell, P. C. (1976) The clonal evolution of tumor cell populations. Science, 194, 23-28.
CrossRef Pubmed Google scholar
[6]
Greaves, M. and Maley, C. C. (2012) Clonal evolution in cancer. Nature, 481, 306-313.
CrossRef Pubmed Google scholar
[7]
Hou, Y., Song, L., Zhu, P., Zhang, B., Tao, Y., Xu, X., Li, F., Wu, K., Liang, J., Shao, D., . (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell, 148, 873-885.
CrossRef Pubmed Google scholar
[8]
Land, H., Parada, L. F. and Weinberg, R. A. (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature, 304, 596-602.
CrossRef Pubmed Google scholar
[9]
Weinberg, R. A. (1995) The retinoblastoma protein and cell cycle control. Cell, 81, 323-330.
CrossRef Pubmed Google scholar
[10]
Paget, S. (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev., 8, 98-101.
Pubmed
[11]
Fidler, I. J. and Poste, G. (2008) The “seed and soil” hypothesis revisited. Lancet Oncol., 9, 808.
CrossRef Pubmed Google scholar
[12]
Wang, X., Ouyang, H., Yamamoto, Y., Kumar, P. A., Wei, T. S., Dagher, R., Vincent, M., Lu, X., Bellizzi, A. M., Ho, K. Y., . (2011) Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell, 145, 1023-1035.
CrossRef Pubmed Google scholar
[13]
Koshland, D. E. Jr, Goldbeter, A. and Stock, J. B. (1982) Amplification and adaptation in regulatory and sensory systems. Science, 217, 220-225.
CrossRef Pubmed Google scholar
[14]
Ao, P. (2009) Global view of bionetwork dynamics: adaptive landscape. J. Genet. Genomics, 36, 63-73.
CrossRef Pubmed Google scholar
[15]
Li, F., Long, T., Lu, Y., Ouyang, Q. and Tang, C. (2004) The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. USA, 101, 4781-4786.
CrossRef Pubmed Google scholar
[16]
Zhu, X. M., Yin, L., Hood, L. and Ao, P. (2004) Robustness, stability and efficiency of phage lambda genetic switch: dynamical structure analysis. J. Bioinform. Comput. Biol., 2, 785-817.
CrossRef Pubmed Google scholar
[17]
Zhu, X., Yin, L., Hood, L., Galas, D. and Ao, P. (2007) Efficiency, robustness, and stochasticity of gene regulatory networks in systems biology: λ switch as a working example. In 机构Choi, S. (ed.), Introduction to Systems Biology. Humana Press, 336-371.
[18]
Bizzarri, M., Giuliani, A., Cucina, A., D’Anselmi, F., Soto, A. M. and Sonnenschein, C. (2011) Fractal analysis in a systems biology approach to cancer. Semin. Cancer Biol., 21, 175-182.
CrossRef Pubmed Google scholar
[19]
Pastan, I. and Gottesman, M. (1987) Multiple-drug resistance in human cancer. N. Engl. J. Med., 316, 1388-1393.
CrossRef Pubmed Google scholar
[20]
Gimbrone, M. A. Jr, Leapman, S. B., Cotran, R. S. and Folkman, J. (1972) Tumor dormancy in vivo by prevention of neovascularization. J. Exp. Med., 136, 261-276.
CrossRef Pubmed Google scholar
[21]
Hartwell, L. H., Hopfield, J. J., Leibler, S. and Murray, A. W. (1999) From molecular to modular cell biology. Nature, 402, C47-C52.
CrossRef Pubmed Google scholar
[22]
Akhurst, R. J. and Derynck, R. (2001) TGF-β signaling in cancer — a double-edged sword. Trends Cell Biol., 11, S44-S51.
[23]
Feng, G.-S. (2012) Conflicting roles of molecules in hepatocarcinogenesis: paradigm or paradox. Cancer Cell, 21, 150-154.
CrossRef Pubmed Google scholar
[24]
Kauffman, S. (2008) Control circuits for determination and transdetermination: interpreting positional information in a binary epigenetic code. In 机构Porter, R. and Rivers J. (eds.), Ciba Foundation Symposium 29- Cell Patterning. John Wiley & Sons, Ltd., 201-221.
[25]
Auffray, C., Chen, Z. and Hood, L. (2009) Systems medicine: the future of medical genomics and healthcare. Genome Med., 1, 2.
[26]
Chalancon, G., Ravarani, C. N. J., Balaji, S., Martinez-Arias, A., Aravind, L., Jothi, R. and Babu, M. M. (2012) Interplay between gene expression noise and regulatory network architecture. Trends Genet., 28, 221-232.
CrossRef Pubmed Google scholar
[27]
Hood, L. and Flores, M. (2012) A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. New Biotechnol., 29, 613-624.
CrossRef Pubmed Google scholar
[28]
Vital-Lopez, F., Memišević, V. and Dutta, B. (2012) Tutorial on biological networks. Wiley Interdiscip. Rev. Data Min. Knowl. Discov., 2, 298-325.
CrossRef Google scholar
[29]
Ao, P., Galas, D., Hood, L., Yin, L. and Zhu, X. M. (2010) Towards predictive stochastic dynamical modeling of cancer genesis and progression. Interdiscip. Sci., 2, 140-144.
CrossRef Pubmed Google scholar
[30]
Nurse, P. (2000) A long twentieth century of the cell cycle and beyond. Cell, 100, 71-78.
CrossRef Pubmed Google scholar
[31]
Garber, K. (2001) Beyond the Nobel Prize: cell cycle research offers new view of cancer. J. Natl. Cancer Inst., 93, 1766-1768.
CrossRef Pubmed Google scholar
[32]
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861-872.
CrossRef Pubmed Google scholar
[33]
Huang, P., He, Z., Ji, S., Sun, H., Xiang, D., Liu, C., Hu, Y., Wang, X. and Hui, L. (2011) Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature, 475, 386-389.
CrossRef Pubmed Google scholar
[34]
Tyson, J. J. and Novak, B. (2008) Temporal organization of the cell cycle. Curr. Biol., 18, R759-R768.
CrossRef Pubmed Google scholar
[35]
Spencer, S. L. and Sorger, P. K. (2011) Measuring and modeling apoptosis in single cells. Cell, 144, 926-939.
CrossRef Pubmed Google scholar
[36]
Meyer, B. J., Maurer, R. and Ptashne, M. (1980) Gene regulation at the right operator (OR) of bacteriophage λ. II. OR1, OR2, and OR3: their roles in mediating the effects of repressor and cro. J. Mol. Biol., 139, 163-194.
CrossRef Pubmed Google scholar
[37]
Yuh, C. H., Bolouri, H. and Davidson, E. H. (1998) Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science, 279, 1896-1902.
CrossRef Pubmed Google scholar
[38]
Baker, S. G. and Kramer, B. S. (2011) Systems biology and cancer: promises and perils. Prog. Biophys. Mol. Biol., 106, 410-413.
CrossRef Pubmed Google scholar
[39]
Alberts, B., Johnson A., Lewis J., Raff M., Roberts K. and Walter P. (2007) Molecular Biology of the Cell (5th ed.). Garland Science.
[40]
Smale, S., Hirsch, M. and Devaney, R. (2003) Differential Equations, Dynamical Systems, and an Introduction to Chaos. Elsevier Science.
[41]
Bar-Yam, Y., Harmon, D. and de Bivort, B. (2009) Attractors and democratic dynamics. Science, 323, 1016-1017.10.1126/science.1163225.
Pubmed
[42]
Ao, P. (2005) Laws in Darwinian evolutionary theory. Phys. Life Rev., 2, 117-156.
CrossRef Google scholar
[43]
Schäfer, M. and Werner, S. (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat. Rev. Mol. Cell Biol., 9, 628-638.
CrossRef Pubmed Google scholar
[44]
Williams, C. S., Mann, M. and DuBois, R. N. (1999) The role of cyclooxygenases in inflammation, cancer, and development. Oncogene, 18, 7908-7916.
CrossRef Pubmed Google scholar
[45]
Neidhardt, F. (1987) Escherichia Coli and Salmonella Typhimurium: Cellular and Molecular Biology. American Society for Microbiology.
[46]
Cairns, J., Stent, G. S. and Watson, J. D. (2007) Phage and the Origins of Molecular Biology (The Centennial Edition). Cold Spring Harbor Laboratory Press.
[47]
Ptashne, M. (2004) A Genetic Switch: Phage Lambda Revisited. Cold Spring Harbor Laboratory Press.
[48]
Shea, M. A. and Ackers, G. K. (1985) The OR control system of bacteriophage lambda: a physical-chemical model for gene regulation. J. Mol. Biol., 181, 211-230.
CrossRef Pubmed Google scholar
[49]
Waddington, C. (1957) The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology. Allen & Unwin.
[50]
Wright, S. (1982) The shifting balance theory and macroevolution. Annu. Rev. Genet., 16, 1-19.
CrossRef Pubmed Google scholar
[51]
Wang, J., Zhang, K., Xu, L. and Wang, E. (2011) Quantifying the Waddington landscape and biological paths for development and differentiation. Proc. Natl. Acad. Sci. USA, 108, 8257-8262.
CrossRef Pubmed Google scholar
[52]
Cao, Y., Lu, H. M. and Liang, J. (2010) Probability landscape of heritable and robust epigenetic state of lysogeny in phage lambda. Proc. Natl. Acad. Sci. USA, 107, 18445-18450.
CrossRef Pubmed Google scholar
[53]
Bryngelson, J. D., Onuchic, J. N., Socci, N. D. and Wolynes, P. G. (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins: Struct. Func. Bioinfo., 21, 167-195.
CrossRef Google scholar
[54]
Ao, P., Kwon, C. and Qian, H. (2007) On the existence of potential landscape in the evolution of complex systems. Complexity, 12, 19-27.
CrossRef Google scholar
[55]
Yuan, R. S. and Ao, P. (2012) Beyond Itô versus Stratonovich. J. Stat. Mech., 2012, P07010.
CrossRef Google scholar
[56]
Tian, W., Zhu, H., Lei, X. and Ao, P. (2011) Extrinsic vs. intrinsic noises in Phage lambda genetic switch. In Proceedings of 2011 IEEE Conference on Systems Biology. 67-71
[57]
El-Serag, H. B. and Rudolph, K. L. (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 132, 2557-2576.
CrossRef Pubmed Google scholar
[58]
Parkin, D. M., Bray, F., Ferlay, J. and Pisani, P. (2005) Global cancer statistics, 2002. CA Cancer J. Clin., 55, 74-108.
CrossRef Pubmed Google scholar
[59]
Monga, S. and Cagle, P. (2010) Molecular Pathology of Liver Diseases. Springer.
[60]
Michalopoulos, G. (2011) Liver regeneration. In 机构Monga, S. P. S. (ed.), Molecular Pathology of Liver Diseases. Springer US, 5, 261-278.
[61]
Higgins, G. M. (1931) Experimental pathology of the liver: I. Restoration of the liver of the while rat following surgical removal. Arch. Pathol. (Chic), 12, 186-202.
[62]
Grisham, J. W. (1962) A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Res., 22, 842-849.
Pubmed
[63]
Wang, H., Iakova, P., Wilde, M., Welm, A., Goode, T., Roesler, W. J. and Timchenko, N. A. (2001) C/EBPα arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol. Cell, 8, 817-828.
CrossRef Pubmed Google scholar
[64]
Ilyin, G. P., Glaise, D., Gilot, D., Baffet, G. and Guguen-Guillouzo, C. (2003) Regulation and role of p21 and p27 cyclin-dependent kinase inhibitors during hepatocyte differentiation and growth. Am. J. Physiol. Gastrointest. Liver Physiol., 285, G115-G127.
Pubmed
[65]
Papakyriakou, P., Tzardi, M., Valatas, V., Kanavaros, P., Karydi, E., Notas, G., Xidakis, C. and Kouroumalis, E. (2002) Apoptosis and apoptosis related proteins in chronic viral liver disease. Apoptosis, 7, 133-141.
CrossRef Pubmed Google scholar
[66]
Wilson, N. S., Dixit, V. and Ashkenazi, A. (2009) Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat. Immunol., 10, 348-355.
CrossRef Pubmed Google scholar
[67]
Green, D. R. and Kroemer, G. (2004) The pathophysiology of mitochondrial cell death. Science, 305, 626-629.
CrossRef Pubmed Google scholar
[68]
Adams, J. M. and Cory, S. (1998) The Bcl-2 protein family: arbiters of cell survival. Science, 281, 1322-1326.
CrossRef Pubmed Google scholar
[69]
Walensky, L. D., Pitter, K., Morash, J., Oh, K. J., Barbuto, S., Fisher, J., Smith, E., Verdine, G. L. and Korsmeyer, S. J. (2006) A stapled BID BH3 helix directly binds and activates BAX. Mol. Cell, 24, 199-210.
CrossRef Pubmed Google scholar
[70]
Jost, P. J., Grabow, S., Gray, D., McKenzie, M. D., Nachbur, U., Huang, D. C., Bouillet, P., Thomas, H. E., Borner, C., Silke, J., . (2009) XIAP discriminates between type I and type II FAS-induced apoptosis. Nature, 460, 1035-1039.
CrossRef Pubmed Google scholar
[71]
Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B. and Korsmeyer, S. J. (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science, 292, 727-730.
CrossRef Pubmed Google scholar
[72]
Du, C., Fang, M., Li, Y., Li, L. and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 102, 33-42.
CrossRef Pubmed Google scholar
[73]
Zhao, Z., Yang, P., Eckert, R. L. and Reece, E. A. (2009) Caspase-8: a key role in the pathogenesis of diabetic embryopathy. Birth Defects Res. B Dev. Reprod. Toxicol., 86, 72-77.
CrossRef Pubmed Google scholar
[74]
Trautwein, C., Böker, K. and Manns, M. P. (1994) Hepatocyte and immune system: acute phase reaction as a contribution to early defence mechanisms. Gut, 35, 1163-1166.
CrossRef Pubmed Google scholar
[75]
Diehl, A. M. (2000) Cytokine regulation of liver injury and repair. Immunol. Rev., 174, 160-171.
CrossRef Pubmed Google scholar
[76]
Ben-Neriah, Y. and Karin, M. (2011) Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol., 12, 715-723.
CrossRef Pubmed Google scholar
[77]
Schwabe, R. F. and Brenner, D. A. (2006) Mechanisms of Liver Injury. I. TNF-α-induced liver injury: role of IKK, JNK, and ROS pathways. Am. J. Physiol. Gastrointest. Liver Physiol., 290, G583-G589.
CrossRef Pubmed Google scholar
[78]
Sakurai, T., He, G., Matsuzawa, A., Yu, G.-Y., Maeda, S., Hardiman, G. and Karin, M. (2008) Hepatocyte necrosis induced by oxidative stress and IL-1α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell, 14, 156-165.
CrossRef Pubmed Google scholar
[79]
Bromberg, J. and Wang, T. C. (2009) Inflammation and cancer: IL-6 and STAT3 complete the link. Cancer Cell, 15, 79-80.
CrossRef Pubmed Google scholar
[80]
Louis, H., Le Moine, O., Goldman, M. and Devière, J. (2003) Modulation of liver injury by interleukin-10. Acta Gastroenterol. Belg., 66, 7-14.
Pubmed
[81]
Cairns, R. A., Harris, I. S. and Mak, T. W. (2011) Regulation of cancer cell metabolism. Nat. Rev. Cancer, 11, 85-95.
CrossRef Pubmed Google scholar
[82]
Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324, 1029-1033.
CrossRef Pubmed Google scholar
[83]
Semenza, G. (2010) HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev., 20, 51-56.
[84]
Lau, C. K., Yang, Z. F., Ho, D. W., Ng, M. N., Yeoh, G. C., Poon, R. T. and Fan, S. T. (2009) An Akt/hypoxia-inducible factor-1α/platelet-derived growth factor-BB autocrine loop mediates hypoxia-induced chemoresistance in liver cancer cells and tumorigenic hepatic progenitor cells. Clin. Cancer Res., 15, 3462-3471.
CrossRef Pubmed Google scholar
[85]
Adams, R. H. and Alitalo, K. (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol., 8, 464-478.
CrossRef Pubmed Google scholar
[86]
Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., . (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 380, 435-439.
CrossRef Pubmed Google scholar
[87]
Massagué, J. (1998) TGF-β signal transduction. Annu. Rev. Biochem., 67, 753-791.
CrossRef Pubmed Google scholar
[88]
Lu, Z., Ghosh, S., Wang, Z. and Hunter, T. (2003) Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell, 4, 499-515.
CrossRef Pubmed Google scholar
[89]
Odom, D. T., Dowell, R. D., Jacobsen, E. S., Nekludova, L., Rolfe, P. A., Danford, T. W., Gifford, D. K., Fraenkel, E., Bell, G. I. and Young, R. A. (2006) Core transcriptional regulatory circuitry in human hepatocytes. Mol. Syst. Biol., 2, 2006.0017.
CrossRef Pubmed Google scholar
[90]
Lu, T. T., Makishima, M., Repa, J. J., Schoonjans, K., Kerr, T. A., Auwerx, J. and Mangelsdorf, D. J. (2000) Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell, 6, 507-515.
CrossRef Pubmed Google scholar
[91]
Vellela, M. and Qian, H. (2009) Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited. J. R. Soc. Interface, 6, 925-940.
CrossRef Pubmed Google scholar
[92]
Rosenfeld, S. (2011) Mathematical descriptions of biochemical networks: stability, stochasticity, evolution. Prog. Biophys. Mol. Biol., 106, 400-409.
CrossRef Pubmed Google scholar
[93]
Villarreal, C., Padilla-Longoria, P., and Alvarez-Buylla, E. R. (2012) General theory of genotype to phenotype mapping: derivation of epigenetic landscapes from N-node complex gene regulatory networks. Phys. Rev. Lett., 109, 118102.
CrossRef Pubmed Google scholar
[94]
Xu, X. R., Huang, J., Xu, Z. G., Qian, B. Z., Zhu, Z. D., Yan, Q., Cai, T., Zhang, X., Xiao, H. S., Qu, J., . (2001) Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc. Natl. Acad. Sci. USA, 98, 15089-15094.
CrossRef Pubmed Google scholar
[95]
Yang, W., Yan, H. X., Chen, L., Liu, Q., He, Y. Q., Yu, L. X., Zhang, S. H., Huang, D. D., Tang, L., Kong, X. N., . (2008) Wnt/β-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res., 68, 4287-4295.
CrossRef Pubmed Google scholar
[96]
Holmes, P. (2005) Ninety plus thirty years of nonlinear dynamics: less is more and more is different. Int. J. Bifurcat. Chaos, 15, 2703-2716.
CrossRef Google scholar
[97]
Ao, P. (2007) Darwinian dynamics implies developmental ascendency. Biol. Theory, 2, 113-115.
CrossRef Google scholar
[98]
Ao, P. (2007) Orders of magnitude change in phenotype rate caused by mutation. Cell. Oncol., 29, 67-69.
Pubmed
[99]
Lee, L., Yin, L., Zhu, X. and Ao, P. (2007) Generic enzymatic rate equation under living conditions. J. Biol. Syst., 15, 495-514.
CrossRef Google scholar
[100]
Ao, P., Lee, L. W., Lidstrom, M. E., Yin, L. and Zhu, X. (2008) Towards kinetic modeling of global metabolic networks: methylobacterium extorquens AM1 growth as validation. Chin. J. Biotechnol., 24, 980-994.
Pubmed
[101]
Liu, C., Fan, D., Shi, Y. and Zhou, Q. (2012) A glimpse of enzymology within the idea of systems. Sci. China Life Sci., 55, 826-833.
CrossRef Pubmed Google scholar
[102]
Huang, S. (2011) On the intrinsic inevitability of cancer: from foetal to fatal attraction. Semin. Cancer Biol., 21, 183-199.
CrossRef Pubmed Google scholar
[103]
Zhou, J. X., Aliyu, M. D., Aurell, E. and Huang, S. (2012) Quasi-potential landscape in complex multi-stable systems. J. R. Soc. Interface, 9, 3539-3553.
CrossRef Pubmed Google scholar
[104]
Baverstock, K. and Karotki, A. V. (2011) Towards a unifying theory of late stochastic effects of ionizing radiation. Mutat. Res., 718, 1-9.
CrossRef Pubmed Google scholar
[105]
Davies, P. C. W. and Lineweaver, C. H. (2011) Cancer tumors as Metazoa 1.0: tapping genes of ancient ancestors. Phys. Biol., 8, 015001.
CrossRef Pubmed Google scholar
[106]
Vincent, M. D. (2011) Cancer: beyond speciation. Adv. Cancer Res., 112, 283-350.
CrossRef Pubmed Google scholar
[107]
Chaffer, C. L., Brueckmann, I., Scheel, C., Kaestli, A. J., Wiggins, P. A., Rodrigues, L. O., Brooks, M., Reinhardt, F., Su, Y., Polyak, K., . (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl. Acad. Sci. USA, 108, 7950-7955.
CrossRef Pubmed Google scholar
[108]
Gupta, P. B., Fillmore, C. M., Jiang, G., Shapira, S. D., Tao, K., Kuperwasser, C. and Lander, E. S. (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell, 146, 633-644.
CrossRef Pubmed Google scholar
[109]
Heng, H. H. Q., Liu, G., Stevens, J. B., Bremer, S. W., Ye, K. J., Abdallah, B. Y., Horne, S. D. and Ye, C. J. (2011) Decoding the genome beyond sequencing: the new phase of genomic research. Genomics, 98, 242-252.
CrossRef Pubmed Google scholar
[110]
Gerstein, M. B., Kundaje, A., Hariharan, M., Landt, S. G., Yan, K.-K., Cheng, C., Mu, X. J., Khurana, E., Rozowsky, J., Alexander, R., . (2012) Architecture of the human regulatory network derived from ENCODE data. Nature, 489, 91-100.
CrossRef Pubmed Google scholar
[111]
Yamanaka, S. (2009) Elite and stochastic models for induced pluripotent stem cell generation. Nature, 460, 49-52.
CrossRef Pubmed Google scholar

ACKNOWLEDGMENTS

The authors would like to express their sincere gratitude for the helpful discussions and or comments with Jianren Gu, Hongyang Wang, Shu Zheng, Sui Huang. One of us (XMZ) thanks the hospitality of SCSB which enabled the collaboration. This work was supported in part by No. 2010CB529200 (PA and GWW).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(516 KB)

Accesses

Citations

Detail

Sections
Recommended

/