Please wait a minute...

Frontiers of Structural and Civil Engineering

Front. Struct. Civ. Eng.    2019, Vol. 13 Issue (1) : 165-175     https://doi.org/10.1007/s11709-018-0484-4
RESEARCH ARTICLE |
3D fracture modelling and limit state analysis of prestressed composite concrete pipes
Pengfei HE1, Yang SHEN1(), Yun GU2, Pangyong SHEN2
1. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
2. Shanghai SMI Engineering Project Management Co., Ltd., Shanghai 201103, China
Download: PDF(3391 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this manuscript, we study fracture of prestressed cylindrical concrete pipes. Such concrete pipes play a major role in tunneling and underground engineering. The structure is modelled fully in 3D using three-dimensional continuum elements for the concrete structure which beam elements are employed to model the reinforcement. This allows the method to capture important phenomena compared to a pure shell model of concrete. A continuous approach to fracture is chosen when concrete is subjected to compressive loading while a combined continuous-discrete fracture method is employed in tension. The model is validated through comparisons with experimental data.

Keywords cylindrical concrete structures      limit state analysis      3D fracture modelling      prestressed composite pipes      reinforced concrete      three-point bending test     
Corresponding Authors: Yang SHEN   
Online First Date: 25 July 2018    Issue Date: 04 January 2019
 Cite this article:   
Pengfei HE,Yang SHEN,Yun GU, et al. 3D fracture modelling and limit state analysis of prestressed composite concrete pipes[J]. Front. Struct. Civ. Eng., 2019, 13(1): 165-175.
 URL:  
http://journal.hep.com.cn/fsce/EN/10.1007/s11709-018-0484-4
http://journal.hep.com.cn/fsce/EN/Y2019/V13/I1/165
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Pengfei HE
Yang SHEN
Yun GU
Pangyong SHEN
Fig.1  Cross section of the composite pipes with three layers of concrete and two layers of steel
Fig.2  3D solid element mesh for concrete, shell element for steel cylinder and truss element for steel wires. (a) Mesh for different layers of concrete; (b) mesh of the steel cylinder; (c) prestressed steel wire; (d) circumferential wire
Fig.3  The strain of the pipe with (right) and without (left) using the deformation compatible air element
Fig.4  Boundary conditions for the three point bending test (a) and the position of strain gauges installed on the pipe (b)
Material type Young’s Modulus
(GPa)
Poisson’s ratio Density
(kg/m3)
Strength
(MPa)
Concrete (C50) 34.5 0.2 2500 Compression
39.6/Tensile
3.22 (1.89)
Steel cylinder (Q345) 206 0.2 7800 300
Prestress wire 205 0.2 7800 1570
Circumferential
steel (CRB550)
190 0.2 7800 500
Tab.1  Materials parameters
Fig.5  Circumferential strain of interior concrete layers with respect to the load
Fig.6  Circumferential strain of exterior concrete layer with respect to the load
Fig.7  Contour plot of the tendon stress (Pa)
Fig.8  Contour plot of the concrete stress (Pa)
Fig.9  Crack pattern at the spigot of the pipe from the experiment (left) and simulation (right)
Fig.10  Crack pattern at the ceiling of the pipe from the experiment (left) and simulation (right)
Fig.11  Crack pattern at the side of the pipe from the experiment (left) and simulation (right)
Fig.12  Debonding of the exterior concrete and intermediate concrete near the steel wire layer
Fig.13  Contour plot of the normal stress at the interface between the the exterior concrete and intermediate concrete
1 Z PBažant, GPijaudier-Cabot. Nonlocal continuum damage, localization instabilities and convergence. Journal of Engineering Mechanics, 1988, 55: 287–293
2 Z PBažant. Why continuum damage is nonlocal: Micromechanics arguments. Journal of Engineering Mechanics, 1991, 117(5): 1070–1087
https://doi.org/10.1061/(ASCE)0733-9399(1991)117:5(1070)
3 Z PBažant, MJirásek. Non-local integral formulations of plasticity and damage: survey of process. Journal of Engineering Mechanics, 2002, 128(11): 1119–1149
https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
4 W FChen. Constitutive Equations for Engineering Materials, Volume 2: Plasticity and Modeling. Amsterdam-London-New York-Tokio: Elsevier, 1994
5 ICarol, Z P Bazant. Damage and plasticity in microplane theory. International Journal of Solids and Structures, 1997, 34(29): 3807–3835
https://doi.org/10.1016/S0020-7683(96)00238-7
6 WHan, B D Reddy. Plasticity. Mathematical theory and numerical analysis. In: Interdisciplinary Applied Mathematics. Springer, 1999
7 R H JPeerlings, Rde Borst, W A MBrekelmans, M G DGeers. Localisation issures in local and nonlocal continuum approaches to fracture. European Journal of Mechanics. A, Solids, 2002, 21(2): 175–189
https://doi.org/10.1016/S0997-7538(02)01211-1
8 R H JPeerlings, Rde Borst, W A MBrekelmans, J H Wde Wree. Gradient enhanced damage for quasi brittle materials. International Journal for Numerical Methods in Engineering, 1996, 39(19): 3391–3403
https://doi.org/10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
9 T QThai, T Rabczuk, YBazilevs, GMeschke. A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 584–604
https://doi.org/10.1016/j.cma.2016.02.031
10 CMiehe, M Hofacker, FWelschinger. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45-48): 2765–2778
https://doi.org/10.1016/j.cma.2010.04.011
11 CMiehe, F Welschinger, MHofacker. Thermodynamically consistent phasefield models of fracture: variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273–1311
https://doi.org/10.1002/nme.2861
12 FAmiri, D Millán, YShen, TRabczuk, MArroyo. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109
https://doi.org/10.1016/j.tafmec.2013.12.002
13 PAreias, T Rabczuk, M AMsekh. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 322–350
https://doi.org/10.1016/j.cma.2016.01.020
14 M AMsekh, M Silani, MJamshidian, PAreias, XZhuang, GZi, P He, TRabczuk. Predictions of j integral and tensile strength of clay/epoxy nanocomposites material using phase field model. Composites. Part B, Engineering, 2016, 93: 97–114
https://doi.org/10.1016/j.compositesb.2016.02.022
15 PAreias, T Rabczuk, J Cde Sá. A novel two-stage discrete crack method based on the screened poisson equation and local mesh refinement. Computational Mechanics, 2016, 58(6): 1003–1018
https://doi.org/10.1007/s00466-016-1328-5
16 PAreias, M A Msekh, T Rabczuk. Damage and fracture algorithm using the screened poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143
https://doi.org/10.1016/j.engfracmech.2015.10.042
17 PAreias, J Reinoso, P PCamanho, JCésar de Sá, TRabczuk. Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation. Engineering Fracture Mechanics, 2018, 189: 339–360
https://doi.org/10.1016/j.engfracmech.2017.11.017
18 V PNguyen, H Lian, TRabczuk, SBordas. Modelling hydraulic fractures in porous media using flow cohesive interface elements. Engineering Geology, 2017, 225: 68–82
https://doi.org/10.1016/j.enggeo.2017.04.010
19 B HNguyen, H D Tran, C Anitescu, XZhuang, TRabczuk. An isogeometric symmetric galerkin boundary element method for two-dimensional crack problems. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 252–275
https://doi.org/10.1016/j.cma.2016.04.002
20 NMoës, J Dolbow, TBelytschko. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150
https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
21 TBelytschko, T Black. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620
https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
22 SNanthakumar, T Lahmer, XZhuang, GZi, T Rabczuk. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 2016, 24(1): 153–176
https://doi.org/10.1080/17415977.2015.1017485
23 S P ABordas, TRabczuk, N XHung, V PNguyen, SNatarajan, TBog, D M Quan, N V Hiep. Strain smoothing in FEM and XFEM. Computers & Structures, 2010, 88(23–24): 1419–1443
https://doi.org/10.1016/j.compstruc.2008.07.006
24 S P ABordas, SNatarajan, PKerfriden, CAugarde, DMahapatra, TRabczuk, SPont. On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM). International Journal for Numerical Methods in Engineering, 2011, 86(4‒5): 637–666
https://doi.org/10.1002/nme.3156
25 S SGhorashi, N Valizadeh, SMohammadi, TRabczuk. T-spline based xiga for fracture analysis of orthotropic media. Computers & Structures, 2015, 147: 138–146
https://doi.org/10.1016/j.compstruc.2014.09.017
26 NNguyen-Thanh, N Valizadeh, M NNguyen, HNguyen-Xuan, XZhuang, PAreias, GZi, Y Bazilevs, LDe Lorenzis, TRabczuk. An extended isogeometric thin shell analysis based on kirchhoff-love theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291
https://doi.org/10.1016/j.cma.2014.08.025
27 C LChan, C Anitescu, TRabczuk. Volumetric parametrization from a level set boundary representation with pht-splines. Computer Aided Design, 2017, 82: 29–41
https://doi.org/10.1016/j.cad.2016.08.008
28 CAnitescu, Y Jia, Y JZhang, TRabczuk. An isogeometric collocation method using superconvergent points. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 1073–1097
https://doi.org/10.1016/j.cma.2014.11.038
29 V PNguyen, C Anitescu, S P ABordas, TRabczuk. Isogeometric analysis: an overview and computer implementation aspects. Mathematics and Computers in Simulation, 2015, 117: 89–116
https://doi.org/10.1016/j.matcom.2015.05.008
30 HGhasemi, H S Park, T Rabczuk. A level-set based IGA formulation for topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 239–258
https://doi.org/10.1016/j.cma.2016.09.029
31 NNguyen-Thanh, J Kiendl, HNguyen-Xuan, RWüchner, K UBletzinger, YBazilevs, TRabczuk. Rotation free isogeometric thin shell analysis using PHT-splines. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47‒48): 3410–3424
https://doi.org/10.1016/j.cma.2011.08.014
32 NNguyen-Thanh, H Nguyen-Xuan, S P ABordas, TRabczuk. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Computer Methods in Applied Mechanics and Engineering, 2011, 200(21-22): 1892–1908
https://doi.org/10.1016/j.cma.2011.01.018
33 B HNguyen, H D Tran, C Anitescu, XZhuang, TRabczuk. An isogeometric symmetric Galerkin boundary element method for two-dimensional crack problems. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 252–275
https://doi.org/10.1016/j.cma.2016.04.002
34 AHansbo, P Hansbo. A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering, 2004, 193(33‒35): 3523–3540
https://doi.org/10.1016/j.cma.2003.12.041
35 J HSong, P M A Areias, T Belytschko. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering, 2006, 67(6): 868–893
https://doi.org/10.1002/nme.1652
36 P M AAreias, J HSong, TBelytschko. Analysis of fracture in thin shells by overlapping paired elements. International Journal for Numerical Methods in Engineering, 2006, 195: 5343–5360
37 TChau-Dinh, G Zi, P SLee, TRabczuk, J HSong. Phantom-node method for shell models with arbitrary cracks. Computers & Structures, 2012, 92 ‒ 93: 242–256
https://doi.org/10.1016/j.compstruc.2011.10.021
38 K MHamdia, M Silani, XZhuang, PHe, T Rabczuk. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 2017, 206(2): 215–227
https://doi.org/10.1007/s10704-017-0210-6
39 YCai, X Zhuang, HZhu. A generalized and efficient method for finite cover generation in the numerical manifold method. International Journal of Computational Methods, 2013, 10(5): 1350028
https://doi.org/10.1142/S021987621350028X
40 HNguyen-Xuan, G R Liu, S Bordas, SNatarajan, TRabczuk. An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 252–273
https://doi.org/10.1016/j.cma.2012.07.017
41 P M AAreias, TRabczuk, P PCamanho. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72: 50–63
https://doi.org/10.1016/j.tafmec.2014.06.006
42 PAreias, T Rabczuk, DDias da Costa. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137
https://doi.org/10.1016/j.engfracmech.2013.06.006
43 PAreias, J Reinoso, PCamanho, TRabczuk. A constitutive-based element-by-element crack propagation algorithm with local mesh refinement. Computational Mechanics, 2015, 56(2): 291–315
https://doi.org/10.1007/s00466-015-1172-z
44 PAreias, T Rabczuk. Finite strain fracture of plates and shells with configurational forces and edge rotations. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122
https://doi.org/10.1002/nme.4477
45 PAreias, T Rabczuk. Steiner-point free edge cutting of tetrahedral meshes with applications in fracture. Finite Elements in Analysis and Design, 2017, 132: 27–41
https://doi.org/10.1016/j.finel.2017.05.001
46 FAmiri, C Anitescu, MArroyo, SBordas, TRabczuk. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57
https://doi.org/10.1007/s00466-013-0891-2
47 TRabczuk, P M A Areias, T Belytschko. A simplified meshfree method for shear bands with cohesive surfaces. International Journal for Numerical Methods in Engineering, 2007, 69(5): 993–1021
https://doi.org/10.1002/nme.1797
48 TRabczuk, G Zi. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743–760
https://doi.org/10.1007/s00466-006-0067-4
49 GZi, T Rabczuk, WWall. Extended meshfree methods without the branch enrichment for cohesive cracks. Computational Mechanics, 2007, 40(2): 367–382
https://doi.org/10.1007/s00466-006-0115-0
50 TRabczuk, G Zi, AGerstenberger, W AWall. A new crack tip element for the phantom node method with arbitrary cohesive cracks. International Journal for Numerical Methods in Engineering, 2008, 75(5): 577–599
https://doi.org/10.1002/nme.2273
51 FAmiri, C Anitescu, MArroyo, S P ABordas, TRabczuk. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57
https://doi.org/10.1007/s00466-013-0891-2
52 TRabczuk, S Bordas, GZi. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23‒24): 1391–1411
https://doi.org/10.1016/j.compstruc.2008.08.010
53 TRabczuk, S Bordas, GZi. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495
https://doi.org/10.1007/s00466-006-0122-1
54 TRabczuk, R Gracie, J HSong, TBelytschko. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71
55 TRabczuk, P M A Areias, T Belytschko. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548
https://doi.org/10.1002/nme.2013
56 TRabczuk, P Areias. A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. Computer Modeling in Engineering & Sciences, 2006, 16(2): 115–130
57 SBordas, T Rabczuk, GZi. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Engineering Fracture Mechanics, 2008, 75(5): 943–960
https://doi.org/10.1016/j.engfracmech.2007.05.010
58 TRabczuk, T Belytschko, S PXiao. Stable particle methods based on lagrangian kernels. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12‒14): 1035–1063
https://doi.org/10.1016/j.cma.2003.12.005
59 HTalebi, M Silani, TRabczuk. Concurrent multiscale modelling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92
https://doi.org/10.1016/j.advengsoft.2014.09.016
60 TRabczuk, G Zi, SBordas, HNguyen-Xuan. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37‒40): 2437–2455
https://doi.org/10.1016/j.cma.2010.03.031
61 P RBudarapu, R Gracie, S WYang, XZhuang, TRabczuk. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143
https://doi.org/10.1016/j.tafmec.2013.12.004
62 P RBudarapu, R Gracie, S P ABordas, TRabczuk. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148
https://doi.org/10.1007/s00466-013-0952-6
63 MSilani, H Talebi, A MHamouda, TRabczuk. Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach. Journal of Computational Science, 2016, 15: 18–23
https://doi.org/10.1016/j.jocs.2015.11.007
64 HTalebi, M Silani, TRabczuk. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80(C): 82–92
https://doi.org/10.1016/j.advengsoft.2014.09.016
65 MSilani, H Talebi, SZiaei-Rad, A MHamouda, GZi, T. Rabczuk A three dimensional extended Arlequin method for dynamic fracture. Computational Materials Science, 2015, 96(PB): 425‒431
66 MSilani, S Ziaei-Rad, HTalebi, TRabczuk. A semi-concurrent multiscale approach for modeling damage in nanocomposites. Theoretical and Applied Fracture Mechanics, 2014, 74(1): 30–38
https://doi.org/10.1016/j.tafmec.2014.06.009
67 HTalebi, M Silani, S P ABordas, PKerfriden, TRabczuk. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071
https://doi.org/10.1007/s00466-013-0948-2
68 HTalebi, M Silani, S P ABordas, PKerfriden, TRabczuk. Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. International Journal for Multiscale Computational Engineering, 2013, 11(6): 527–541
https://doi.org/10.1615/IntJMultCompEng.2013005838
69 S ASilling. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209
https://doi.org/10.1016/S0022-5096(99)00029-0
70 TRabczuk, H Ren. A peridynamics formulation for quasi-static fracture and contact in rock. Engineering Geology, 2017, 225: 42–48
https://doi.org/10.1016/j.enggeo.2017.05.001
71 HRen, X Zhuang, TRabczuk. Dual-horizon peridynamics: a stable solution to varying horizons. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 762–782
https://doi.org/10.1016/j.cma.2016.12.031
72 HRen, X Zhuang, YCai, TRabczuk. Dual-horizon peridynamics. International Journal for Numerical Methods in Engineering, 2017, 318: 768–782
73 TRabczuk, J Eibl. Modelling dynamic failure of concrete with meshfree methods. International Journal of Impact Engineering, 2006, 32(11): 1878–1897
https://doi.org/10.1016/j.ijimpeng.2005.02.008
74 TRabczuk, T Belytschko. Application of meshfree particle methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(1‒4): 19–49
https://doi.org/10.1007/s10704-005-3075-z
75 TRabczuk, G Zi, SBordas, HNguyen-Xuan. A geometrically nonlinear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758
https://doi.org/10.1016/j.engfracmech.2008.06.019
76 TRabczuk, J Akkermann, JEibl. A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5‒6): 1327–1354
https://doi.org/10.1016/j.ijsolstr.2004.07.019
77 NVu-Bac, T Lahmer, YZhang, XZhuang, TRabczuk. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering, 2014, 59: 80–95
https://doi.org/10.1016/j.compositesb.2013.11.014
78 NVu-Bac, T Lahmer, XZhuang, TNguyen-Thoi, TRabczuk. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
https://doi.org/10.1016/j.advengsoft.2016.06.005
79 KHamdia, M Silani, XZhuang, PHe, T Rabczuk. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 2017, 206(2): 215–227
https://doi.org/10.1007/s10704-017-0210-6
Related articles from Frontiers Journals
[1] Ali KEZMANE,Said BOUKAIS,Mohand Hamizi. Numerical simulation of squat reinforced concrete wall strengthened by FRP composite material[J]. Front. Struct. Civ. Eng., 2016, 10(4): 445-455.
[2] Xianming SHI. Experimental and modeling studies on installation of arc sprayed Zn anodes for protection of reinforced concrete structures[J]. Front. Struct. Civ. Eng., 2016, 10(1): 1-11.
[3] Witarto WITARTO,Liang LU,Rachel Howser ROBERTS,Y. L. MO,Xilin LU. Shear-critical reinforced concrete columns under various loading rates[J]. Front. Struct. Civ. Eng., 2014, 8(4): 362-372.
[4] Antonio MARÍ,Antoni CLADERA,Jesús BAIRÁN,Eva OLLER,Carlos RIBAS. Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected to point or distributed loads[J]. Front. Struct. Civ. Eng., 2014, 8(4): 337-353.
[5] Dong XU,Yu ZHAO,Chao LIU. Experimental study on shear behavior of reinforced concrete beams with web horizontal reinforcement[J]. Front. Struct. Civ. Eng., 2014, 8(4): 325-336.
[6] Zihua ZHANG,Junhua LI,Lei ZHANG,Kai YU. Study on the interfacial shear behavior of steel reinforced concrete (SRC) members with stud connectors after fire[J]. Front. Struct. Civ. Eng., 2014, 8(2): 140-150.
[7] Yasser SHARIFI, Ali Akbar MAGHSOUDI. An experimental study on the flexural behavior of heavily steel reinforced beams with high-strength concrete[J]. Front Struc Civil Eng, 2014, 8(1): 46-56.
[8] Iman TABAEYE IZADI, Abdolrasoul RANJBARAN. Investigation on a mitigation scheme to resist the progressive collapse of reinforced concrete buildings[J]. Front Struc Civil Eng, 2012, 6(4): 421-430.
[9] Zhigen WU, Guohua LIU, Zihua ZHANG. Experimental study of structural damage identification based on modal parameters and decay ratio of acceleration signals[J]. Front Arch Civil Eng Chin, 2011, 5(1): 112-120.
[10] Wanlin CAO, Jianwei ZHANG, Jingna ZHANG, Min WANG, . Experimental study on seismic behavior of mid-rise RC shear wall with concealed truss[J]. Front. Struct. Civ. Eng., 2009, 3(4): 370-377.
[11] Wanlin CAO , Weihua CHANG , Changjun ZHAO , Jianwei ZHANG , . Experiment and calculation on seismic behavior of RC composite core walls with concealed steel truss[J]. Front. Struct. Civ. Eng., 2009, 3(3): 255-261.
[12] JIANG Jinyang, SUN Wei, ZHANG Yunsheng, CHEN Cuicui, WANG Jing. Cracking resistance performance of super vertical-distance pumped SFRC[J]. Front. Struct. Civ. Eng., 2008, 2(2): 179-183.
[13] BU Liangtao, SHI Chuxian, SONG Li. Consumption of carbon fiber plates in the reinforced concrete beams strengthened with CFPs[J]. Front. Struct. Civ. Eng., 2007, 1(4): 393-398.
[14] HU Kexu, HE Guisheng, LU Fan. Experimental study on fire protection methods of reinforced concrete beams strengthened with carbon fiber reinforced polymer[J]. Front. Struct. Civ. Eng., 2007, 1(4): 399-404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed