Please wait a minute...

Frontiers of Structural and Civil Engineering

Front. Struct. Civ. Eng.    2018, Vol. 12 Issue (1) : 137-147
Pore structure of cementitious material enhanced by graphitic nanomaterial: a critical review
1. Department of Civil Engineering, Purdue University, USA
2. Department of Civil and Environmental Engineering, University of South Carolina, USA
Download: PDF(181 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Carbon nano tubes (CNT) has been introduced as an efficient nanomaterial in order to improve the mechanical and durability properties of concrete. The effect of CNT on the microstructures of cementitious materials has been widely reported. This paper combines a critical review on the effect of CNT on the pore and microstructure of cement composite with a discussion on the porosity measurement of pastes containing CNT using mercury intrusion porosimetry techniques (MIP). It was found that, surface treatment by H2SO4 and HNO3 solution forms carboxyl acid groups on CNTs’ surfaces that lead to the improvement of reinforcement. In this scope, this review paper involves analyzing the effect of CNT on the microstructure and the pore structure of cementitious materials. The existing methods of measuring the porosity of cementitious material are reviewed, in particular, the contact angle measurement is discussed in detail in which the most effective parameters and possible errors of calculation is presented.

Keywords carbon nano tubes      microstructure      porosity      mercury intrusion porosimetry      cement composite     
Corresponding Authors: S.A. GHAHARI   
Online First Date: 29 August 2017    Issue Date: 08 March 2018
 Cite this article:   
S.A. GHAHARI,E. GHAFARI,L. ASSI. Pore structure of cementitious material enhanced by graphitic nanomaterial: a critical review[J]. Front. Struct. Civ. Eng., 2018, 12(1): 137-147.
E-mail this article
E-mail Alert
Articles by authors
1 Olivier J, Janssens-Maenhout  G, Muntean M,  Peters J. Trends in global CO2 emissions: 2015 Report. PBL Netherlands Environmental Assessment Agency, 2015, report number: JRC 98184
2 Marceau M, Nisbet  M A, Van Geem  M G. Life cycle inventory of portland cement manufacture. Portland Cement Association Skokie, 2006, PCA R&D Serial No. 2095b
3 Ramezanianpour A A,  Ghahari S A,  Esmaeili M. Effect of combined carbonation and chloride ion ingress by an accelerated test method on microscopic and mechanical properties of concrete. Construction & Building Materials, 2014, 58: 138–146
4 Heikal M, Abd El Aleem  S, Morsi W M. Durability of composite cements containing granulated blast-furnace slag and silica nano-particles. Indian Journal of Engineering and Materials Sciences, 2016, 23(1): 88–100
5 Abd El. Aziz  M, Abd El.  Aleem S,  Heikal M,  El. Didamony H. Hydration and durability of sulphate-resisting and slag cement blends in Caron’s Lake water.  Cement and Concrete Research, 2005, 35(8): 1592–1600
6 Ghahari S A, Ramezanianpour  A M, Ramezanianpour  A A, Esmaeili M. An accelerated test method of simultaneous carbonation and chloride ion ingress: durability of silica fume concrete in severe environments. Advances in Materials Science and Engineering, 2016, 2016: 1650979
7 Assi L, Ghahari  S A, Deaver  E E, Leaphart  D, Ziehl P. Improvement of the early and final compressive strength of fly ash-based geopolymer concrete at ambient conditions. Construction & Building Materials, 2016, 123: 806–813
8 Ahlborn T. Sustainability for the concrete bridge engineering community. ASPIRE, 2008, 15–19
9 Ramezanianpour A A,  Ghahari S A,  Khazaie A. Feasibility Study on Production and Sustainability of Poly Propylene Fiber Reinforced Concrete Ties Based on a Value Engineering Survey. In: The 3rd International Conference on Sustainable Construction Materials and Technologies (SCMT3). 2013. Coventry University, University of Wisconsin
10 Ramezanianpour A M,  Esmaeili K,  Ghahari S A,  Ramezanianpour A A. Influence of initial steam curing and different types of mineral additives on mechanical and durability properties of self-compacting concrete. Construction & Building Materials, 2014, 73: 187–194
11 Mackechnie J R,  Alexander M G. Using durability to enhance concrete sustainability. Journal of Green building, 2009, 4(3): 52–60
12 Abd El-aleem Mohamed S, Abd El-rahman Ragab Khalil. Physico-mechanical properties and microstructure of blended cement incorporating nano-silica. International Journal of Engineering Research and Technology, 2014, 3(7): 339–358
13 Abd El. Aleem S,  Heikal M,  Morsi W M. Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica. Construction & Building Materials, 2014, 59(0): 151–160
14 Heikal M, Abd El-Aleem  S, Morsi W M. Characteristics of blended cements containing nano-silica. HBRC Journal, 2013, 9(3): 243–255
15 Ghafari E, Costa  H, Júlio E,  Portugal A,  Durães L. The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Materials & Design, 2014, 59: 1–9
16 Ghafari E, Costa  H, Júlio E. Critical review on eco-efficient ultra high performance concrete enhanced with nano-materials. Construction & Building Materials, 2015, 101(Part 1): 201–208
17 Lu L, Ouyang  D, Xu W. Mechanical properties and durability of ultra high strength concrete incorporating multi-walled carbon nanotubes. Materials (Basel), 2016, 9(6): 419
18 Tamimi A, Hassan  N M, Fattah  K, Talachi A. Performance of cementitious materials produced by incorporating surface treated multiwall carbon nanotubes and silica fume. Construction & Building Materials, 2016, 114: 934–945
19 Eftekhari M, Mohammadi  S. Multiscale dynamic fracture behavior of the carbon nanotube reinforced concrete under impact loading. International Journal of Impact Engineering, 2016, 87: 55–64
20 Nochaiya T, Chaipanich  A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials. Applied Surface Science, 2011, 257(6): 1941–1945
21 Konsta-Gdoutos M S,  Metaxa Z S,  Shah S P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cement and Concrete Composites, 2010, 32(2): 110–115
22 Metaxa Z S, Konsta-Gdoutos  M S, Shah  S P. Carbon nanotubes reinforced concrete. In: Konstantin S, Taha M E, eds. Nanotechnology of Concerete: the Next Big Thing is Small. ACI Special Publication, 2009, 267: 11–20
23 Day R L, Marsh  B K. Measurement of porosity in blended cement pastes. Cement and Concrete Research, 1988, 18(1): 63–73
24 Vodák F, Trtík  K, Kapičková O, Hošková Š, Demo P. The effect of temperature on strength–porosity relationship for concrete. Construction & Building Materials, 2004, 18(7): 529–534
25 Auskern A, Horn  W. Capillary porosity in hardened cement paste. Journal of Testing and Evaluation, 1973, 1(1): 74–79
26 Pantazopoulou S, Mills  R. Microstructural aspects of the mechanical response of plain concrete. ACI Materials Journal, 1995, 92(6): 605–616
27 ASTM-D4404. Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry. ASTM International, West Conshohocken, PA, 2007, 1–7
28 Winslow D N, Cohen  M D, Bentz  D P, Snyder  K A, Garboczi  E J. Percolation and pore structure in mortars and concrete. Cement and Concrete Research, 1994, 24(1): 25–37
29 Cook D J, Cao  H T. An Investigation of the Pore Structure in Fly Ash/OPC Blends, Pore Structure and Construction Properties. Proceedings of the First International Congress, RILEM/AFREM, 1987, 1: 69–76
30 Ouellet S, Bussière  B, Aubertin M,  Benzaazoua M. Microstructural evolution of cemented paste backfill: mercury intrusion porosimetry test results. Cement and Concrete Research, 2007, 37(12): 1654–1665
31 Li G Y, Wang  P M, Zhao  X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon, 2005, 43(6): 1239–1245
32 Holly J, Hampton  D, Thomas M D. Modelling relationships between permeability and cement paste pore microstructures. Cement and Concrete Research, 1993, 23(6): 1317–1330
33 El-Dieb A, Hooton  R. Evaluation of the Katz-Thompson model for estimating the water permeability of cement-based materials from mercury intrusion porosimetry data. Cement and Concrete Research, 1994, 24(3): 443–455
34 Mehta P K, Manmohan  D. Pore Size Distribution and Permeability of Hardened Cement Pastes. The 7th International Congress on the Chemistry of Cement, 1980, II: 1–5
35 Moon H Y, Kim  H S, Choi  D S. Relationship between average pore diameter and chloride diffusivity in various concretes. Construction & Building Materials, 2006, 20(9): 725–732
36 Moro F, Böhni  H. Ink-bottle effect in mercury intrusion porosimetry of cement-based materials. Journal of Colloid and Interface Science, 2002, 246(1): 135–149
37 Diamond S. Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials. Cement and Concrete Research, 2000, 30(10): 1517–1525
38 Gallé C. Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry: a comparative study between oven-, vacuum-, and freeze-drying. Cement and Concrete Research, 2001, 31(10): 1467–1477
39 Mehta P K, Monteiro  P J. Concrete: Microstructure, Properties, and Materials (3rd ed). 2006. McGraw-Hill New York
40 Ye G. Percolation of capillary pores in hardening cement pastes. Cement and Concrete Research, 2005, 35(1): 167–176
41 Cook R A, Hover  K C. Mercury porosimetry of hardened cement pastes. Cement and Concrete Research, 1999, 29(6): 933–943
42 Chen X, Wu  S. Influence of water-to-cement ratio and curing period on pore structure of cement mortar. Construction & Building Materials, 2013, 38: 804–812
43 Ma Y, Hu  J, Ye G. The pore structure and permeability of alkali activated fly ash. Fuel, 2013, 104: 771–780
44 Zeng Q, Li  K, Fen-chong T,  Dangla P. Pore structure characterization of cement pastes blended with high-volume fly-ash. Cement and Concrete Research, 2012, 42(1): 194–204
45 Zhou J, Ye  G, van Breugel K. Characterization of pore structure in cement-based materials using pressurization–depressurization cycling mercury intrusion porosimetry (PDC-MIP). Cement and Concrete Research, 2010, 40(7): 1120–1128
46 Felipe C, Cordero  S, Kornhauser I,  Zgrablich G,  López R,  Rojas F. Domain complexion diagrams related to mercury intrusion-extrusion in monte carlo-simulated porous networks. Particle & Particle Systems Characterization, 2006, 23(1): 48–60
47 Porcheron F, Monson  P A, Thommes  M. Modeling mercury porosimetry using statistical mechanics. Langmuir, 2004, 20(15): 6482–6489
48 Porcheron F, Thommes  M, Ahmad R,  Monson P A. Mercury porosimetry in mesoporous glasses: a comparison of experiments with results from a molecular model. Langmuir, 2007, 23(6): 3372–3380
49 Moura M J, Ferreira  P J, Figueiredo  M M. Mercury intrusion porosimetry in pulp and paper technology. Powder Technology, 2005, 160(2): 61–66
50 Bhuiyan I, Mouzon  J, Forsmo S P E,  Hedlund J. Quantitative image analysis of bubble cavities in iron ore green pellets. Powder Technology, 2011, 214(3): 306–312
51 Wild S. A discussion of the paper “Mercury porosimetry—an inappropriate method for the measurement of pore size distributions in cement-based materials” by S. Diamond. Cement and Concrete Research, 2001, 31(11): 1653–1654
52 Gallé C. Reply to the discussion by S. Diamond of the paper “Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry: a comparative study between oven-, vacuum-and freeze-drying”. Cement and Concrete Research, 2003, 33(1): 171–172
53 Wang Y.Microstructural study of hardened cement paste by backscatter scanning electron microscopy and image analysis. Dissertation for PhD. degree. Purdue University, 1995
54 Liu Z, Winslow  D. Sub-distributions of pore size: a new approach to correlate pore structure with permeability. Cement and Concrete Research, 1995, 25(4): 769–778
55 Diamond S. A critical comparison of mercury porosimetry and capillary condensation pore size distributions of portland cement pastes. Cement and Concrete Research, 1971, 1(5): 531–545
56 Katz A, Thompson  A. Quantitative prediction of permeability in porous rock. Physical Review B: Condensed Matter and Materials Physics, 1986, 34(11): 8179–8181
57 Chatterji S. A discussion of the paper “Mercury porosimetry—an inappropriate method for the measurement of pore size distributions in cement-based materials” by S. Diamond. Cement and Concrete Research, 2001, 31(11): 1657–1658
58 Diamond S. Reply to the discussion by S. Chatterji of the paper “Mercury porosimetry—an inappropriate method for the measurement of pore size distributions in cement-based materials”. Cement and Concrete Research, 2001, 31(11): 1659
59 Wenzel R N. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936, 28(8): 988–994
60 Marmur A. Soft contact: measurement and interpretation of contact angles. Soft Matter, 2006, 2(1): 12–17
61 Marmur A. Solid-surface characterization by wetting. Annual Review of Materials Research, 2009, 39(1): 473–489
62 Moutinho I, Figueiredo  M, Ferreira P. Evaluating the surface energy of laboratory-made paper sheets by contact angle measurements. Tappi Journal, 2007, 6(6): 26–32
63 Rosales-Leal J, Rodríguez-Valverde  M A, Mazzaglia  G, Ramón-Torregrosa P J, Díaz-Rodríguez  L, García-Martínez  O, Vallecillo-Capilla M, Ruiz C,  Cabrerizo-Vílchez M A. Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 365(1−3): 222–229
64 Marmur A. Thermodynamic aspects of contact angle hysteresis. Advances in Colloid and Interface Science, 1994, 50: 121–141
65 Gao L, McCarthy  T J. Contact angle hysteresis explained. Langmuir, 2006, 22(14): 6234–6237
66 Walls J, Smith  R. Surface science techniques. Vacuum, 2013, 45(6−7): 647
67 Hearn N, Hooton  R D. Sample mass and dimension effects on mercury intrusion porosimetry results. Cement and Concrete Research, 1992, 22(5): 970–980
68 Poon C S, Lam  L, Wong Y L. A study on high strength concrete prepared with large volumes of low calcium fly ash. Cement and Concrete Research, 2000, 30(3): 447–455
69 Feldman R F, Beaudoin  J J. Pretreatment of hardened hydrated cement pastes for mercury intrusion measurements. Cement and Concrete Research, 1991, 21(2−3): 297–308
70 Korpa A, Trettin  R. The influence of different drying methods on cement paste microstructures as reflected by gas adsorption: comparison between freeze-drying (F-drying), D-drying, P-drying and oven-drying methods. Cement and Concrete Research, 2006, 36(4): 634–649
71 Konecny L, Naqvi  S J. The effect of different drying techniques on the pore size distribution of blended cement mortars. Cement and Concrete Research, 1993, 23(5): 1223–1228
72 Good R J, Mikhail  R S. The contact angle in mercury intrusion porosimetry. Powder Technology, 1981, 29(1): 53–62
73 Feldman R F. Pore structure damage in blended cements caused by mercury intrusion. Journal of the American Ceramic Society, 1984, 67(1): 30–33
74 Ma H. Mercury intrusion porosimetry in concrete technology: tips in measurement, pore structure parameter acquisition and application. Journal of Porous Materials, 2014, 21(2): 207–215
75 ISO15901-1. Evaluation of Pore Size Distribution and Porosimetry of Solid Materials by Mercury Porosimetry and Gas Adsorption—Part 1: Mercury Porosimetry (International Organization for Standardization. 2005. Geneva: 6–9
76 Kaufmann J, Loser  R, Leemann A. Analysis of cement-bonded materials by multi-cycle mercury intrusion and nitrogen sorption. Journal of Colloid and Interface Science, 2009, 336(2): 730–737
77 Kumar R, Bhattacharjee  B. Study on some factors affecting the results in the use of MIP method in concrete research. Cement and Concrete Research, 2003, 33(3): 417–424
78 Ye G, Van Breugel  K, Fraaij A. Three-dimensional microstructure analysis of numerically simulated cementitious materials. Cement and Concrete Research, 2003, 33(2): 215–222
79 Winslow D. Some experimental possibilities with mercury intrusion porosimetry. MRS Proceedings. Cambridge Univ Press, 1988
80 Bonard J M, Croci  M, Klinke C,  Kurt R, Noury  O, Weiss N. Carbon nanotube films as electron field emitters. Carbon, 2002, 40(10): 1715–1728
81 Lau A K T,  Hui D. The revolutionary creation of new advanced materials—carbon nanotube composites. Composites Part B: Engineering, 2002, 33(4): 263–277
82 Fragneaud B, Masenelli-Varlot  K, Gonzalez-Montiel A,  Terrones M,  Cavaillé J Y. Mechanical behavior of polystyrene grafted carbon nanotubes/polystyrene nanocomposites. Composites Science and Technology, 2008, 68(15−16): 3265–3271
83 Li G Y, Wang  P M, Zhao  X. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cement and Concrete Composites, 2007, 29(5): 377–382
84 Makar J, Margeson  J, Luh J. Carbon nanotube/cement composites-early results and potential applications. Conference on Construction Materials, 2005
85 Moore E M, Ortiz  D L, Marla  V T, Shambaugh  R L, Grady  B P. Enhancing the strength of polypropylene fibers with carbon nanotubes. Journal of Applied Polymer Science, 2004, 93(6): 2926–2933
86 Zhao Q, Gan  Z, Zhuang Q. Electrochemical sensors based on carbon nanotubes. Electroanalysis, 2002, 14(23): 1609–1613
87 Riggs J E, Guo  Z, Carroll D L,  Sun Y P. Strong luminescence of solubilized carbon nanotubes. Journal of the American Chemical Society, 2000, 122(24): 5879–5880
88 Makar J, Beaudoin  J. Carbon nanotubes and their application in the construction industry. Special Publication- Royal Society of Chemistry, 2004, 292: 331–341
89 Yu M F, Lourie  O, Dyer M J, Moloni K, Kelly T F, Ruoff R S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 2000, 287(5453): 637–640
90 Salvetat J P, Bonard  J M, Thomson  N H, Kulik  A J, Forró  L, Benoit W,  Zuppiroli L. Mechanical properties of carbon nanotubes. Applied Physics A: Materials Science & Processing, 1999, 69(3): 255–260
91 Walters D, Ericson  L M, Casavant  M J, Liu  J, Colbert D T,  Smith K A,  Smalley R E. Elastic strain of freely suspended single-wall carbon nanotube ropes. Applied Physics Letters, 1999, 74(25): 3803–3805
92 Berber S, Kwon  Y K, Tomanek  D. Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters, 2000, 84(20): 4613–4616
93 Louie S G. Electronic properties, junctions, and defects of carbon nanotubes. In: Dresselhaus M S, Dresselhaus G, Avouris P, eds. Carbon Nanotubes. Springer, 2001, 113–145
94 Cwirzen A, Habermehl-Cwirzen  K, Penttala V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Advances in Cement Research, 2008, 20(2): 65–73
95 Makar J M, Chan  G W. Growth of cement hydration products on single-walled carbon nanotubes. Journal of the American Ceramic Society, 2009, 92(6): 1303–1310
96 Barraza H J, Pompeo  F, O’Rea E A,  Resasco D E. SWNT-filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization. Nano Letters, 2002, 2(8): 797–802
97 Saez de Ibarra Y,  Gaitero J J,  Erkizia E,  Campillo I. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Physica Status Solidi (a), 2006, 203(6): 1076–1081
98 Ma R Z, Wu  J, Wei B Q,  Liang J,  Wu D H. Processing and properties of carbon nanotubes–nano-SiC ceramic. Journal of Materials Science, 1998, 33(21): 5243–5246
99 Wansom S, Kidner  N J, Woo  L Y, Mason  T O. AC-impedance response of multi-walled carbon nanotube/cement composites. Cement and Concrete Composites, 2006, 28(6): 509–519
100 Fu X, Chung  D. Submicron-diameter-carbon-filament cement-matrix composites. Carbon, 1998, 36(4): 459–462
101 Eitan A, Jiang  K, Dukes D,  Andrews R,  Schadler L S. Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chemistry of Materials, 2003, 15(16): 3198–3201
102 Cwirzen A, Habermehl-Cwirzen  K, Nasibulin A G,  Kaupinen E I,  Mudimela P R,  Penttala V. SEM/AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles. Materials Characterization, 2009, 60(7): 735–740
103 Musso S, Tulliani  J M, Ferro  G, Tagliaferro A. Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Composites Science and Technology, 2009, 69(11−12): 1985–1990
104 Konsta-Gdoutos M S,  Metaxa Z S,  Shah S P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cement and Concrete Composites, 2010, 32(2): 110–115
105 Sanchez F, Ince  C. Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites. Composites Science and Technology, 2009, 69(7−8): 1310–1318
106 Musso S, Porro  S, Vinante M,  Vanzetti L,  Ploeger R,  Giorcelli M,  Possetti B,  Trotta F,  Pederzolli C,  Tagliaferro A. Modification of MWNTs obtained by thermal-CVD. Diamond and Related Materials, 2007, 16(4): 1183–1187
107 Chaipanich A, Nochaiya  T, Wongkeo W,  Torkittikul P. Compressive strength and microstructure of carbon nanotubes–fly ash cement composites. Materials Science and Engineering A, 2010, 527(4): 1063–1067
108 Nochaiya T, Tolkidtikul  P, Singjai P,  Chaipanich A. Microstructure and characterizations of Portland-carbon nanotubes pastes. Advanced Materials Research, 2008, 55: 549–552
109 Pandey S, Sharma  R. The influence of mineral additives on the strength and porosity of OPC mortar. Cement and Concrete Research, 2000, 30(1): 19–23
110 Abell A, Willis  K, Lange D. Mercury intrusion porosimetry and image analysis of cement-based materials. Journal of Colloid and Interface Science, 1999, 211(1): 39–44
111 Pipilikaki P, Beazi-Katsioti  M. The assessment of porosity and pore size distribution of limestone Portland cement pastes. Construction & Building Materials, 2009, 23(5): 1966–1970
112 Atahan H N, Oktar  O N, Taşdemir  M A. Effects of water–cement ratio and curing time on the critical pore width of hardened cement paste. Construction & Building Materials, 2009, 23(3): 1196– 1200
113 Lu Z, Hou  D, Meng L,  Sun G, Lu  C, Li Z. Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties. RSC Advances, 2015, 5(122): 100598–100605
Related articles from Frontiers Journals
[1] Jing HU, Pengfei LIU, Bernhard STEINAUER. A study on fatigue damage of asphalt mixture under different compaction using 3D-microstructural characteristics[J]. Front. Struct. Civ. Eng., 2017, 11(3): 329-337.
[2] Elena CERRO-PRADA,Miguel MANSO,Vicente TORRES,Jesús SORIANO. Microstructural and photocatalytic characterization of cement-paste sol-gel synthesized titanium dioxide[J]. Front. Struct. Civ. Eng., 2016, 10(2): 189-197.
[3] L. P. SINGH,A. GOEL,S. K. BHATTACHARYYA,G. MISHRA. Quantification of hydration products in cementitious materials incorporating silica nanoparticles[J]. Front. Struct. Civ. Eng., 2016, 10(2): 162-167.
[4] George STEFANOU. Simulation of heterogeneous two-phase media using random fields and level sets[J]. Front. Struct. Civ. Eng., 2015, 9(2): 114-120.
[5] Dong-Mei ZHANG, Zhen-Yu YIN, Pierre-Yves HICHER, Hong-Wei HUANG. Analysis of cement-treated clay behavior by micromechanical approach[J]. Front Struc Civil Eng, 2013, 7(2): 137-153.
[6] Bettina ALBERS, Krzysztof WILMANSKI. Continuous modeling of soil morphology —thermomechanical behavior of embankment dams[J]. Front Arch Civil Eng Chin, 2011, 5(1): 11-23.
[7] TANG Yiqun, ZHOU Nianqing, YANG Ping, SHEN Feng. Analysis of behavior of melted dark green silty soil[J]. Front. Struct. Civ. Eng., 2008, 2(3): 242-245.
[8] CHEN Huisu, SUN Wei, ZHAO Qingxin, L. J. Sluys, P. Stroeven. Effects of fiber curvature on the microstructure of the interfacial transition zone in fresh concrete[J]. Front. Struct. Civ. Eng., 2007, 1(1): 99-106.
Full text