Please wait a minute...

Frontiers of Structural and Civil Engineering

Front. Struct. Civ. Eng.    2018, Vol. 12 Issue (2) : 215-221     https://doi.org/10.1007/s11709-017-0401-2
RESEARCH ARTICLE |
Application of semi-analytical finite element method to analyze the bearing capacity of asphalt pavements under moving loads
Pengfei LIU(), Dawei WANG, Frédéric OTTO, Markus OESER
Institute of Highway Engineering, RWTH Aachen University, Aachen D52074, Germany
Download: PDF(1298 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To facilitate long term infrastructure asset management systems, it is necessary to determine the bearing capacity of pavements. Currently it is common to conduct such measurements in a stationary manner, however the evaluation with stationary loading does not correspond to reality a tendency towards continuous and high speed measurements in recent years can be observed. The computational program SAFEM was developed with the objective of evaluating the dynamic response of asphalt under moving loads and is based on a semi-analytic element method. In this research project SAFEM is compared to commercial finite element software ABAQUS and field measurements to verify the computational accuracy. The computational accuracy of SAFEM was found to be high enough to be viable whilst boasting a computational time far shorter than ABAQUS. Thus, SAFEM appears to be a feasible approach to determine the dynamic response of pavements under dynamic loads and is a useful tool for infrastructure administrations to analyze the pavement bearing capacity.

Keywords semi-analytical finite element method      bearing capacity      asphalt pavements      moving loads      dynamic response     
Corresponding Authors: Pengfei LIU   
Online First Date: 12 June 2017    Issue Date: 23 April 2018
 Cite this article:   
Pengfei LIU,Dawei WANG,Frédéric OTTO, et al. Application of semi-analytical finite element method to analyze the bearing capacity of asphalt pavements under moving loads[J]. Front. Struct. Civ. Eng., 2018, 12(2): 215-221.
 URL:  
http://journal.hep.com.cn/fsce/EN/10.1007/s11709-017-0401-2
http://journal.hep.com.cn/fsce/EN/Y2018/V12/I2/215
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Pengfei LIU
Dawei WANG
Frédéric OTTO
Markus OESER
Fig.1  Pavement structure geometry and load mode [13]
Fig.2  Schematic illustration of loading conditions in SAFEM [12]
Fig.3  (a) The test track at BASt [1820]; (b) top view with loading wheel path.
layer thickness (mm) µ E (MPa) density (t/mm3)
Surface course 40 0.35 11150 2.377 E-09
Binder course 50 0.35 10435 2.448 E-09
Asphalt base course 110 0.35 6893 2.301 E-09
Gravel base layer 150 0.49 157.8 2.400 E-09
Frost protection layer 570 0.49 125.7 2.400 E-09
Sub-grade 2000 0.49 98.9 2.400 E-09
Tab.1  material properties and thickness of pavement layers.
Fig.4  Geometric data and tires of the truck S23 [17]
Fig.5  Automatic mesh generation for the test track (a) SAFEM; (b) ABAQUS
Fig.6  The schematic illustration of simulation process with the moving load in ABAQUS (a) Step time= 0, increment=0; (b) Step time= 0.3024?s, increment=105; (c) Step time= 0.59904?s, increment=208; (d) Loading area when the step time is 0.3024?s
Fig.7  Surface deflections from ABAQUS and SAFEM
measurement ABAQUS difference SAFEM difference
strain along the traffic direction on the bottom of the asphalt base course [μm/m] 81.5 87.0 6.75% 86.3 5.88%
vertical tensile stress on the top of the gravel base layer [MPa] -0.0556 -0.0316 -43.1% -0.0283 -49.1%
Tab.2  Comparison of results from field measurements, ABAQUS and SAFEM regarding the strains and stresses at critical points.
ABAQUS SAFEM
elements 160016 2958
nodes 274122 6167
computational time (h) 19.22 0.92
Tab.3  Comparison between ABAQUS and SAFEM regarding elements, nodes and computational time.
1 Hou Y, Wang L, Yue P, Pauli T, Sun W. Modeling Mode I Cracking Failure in Asphalt Binder by Using Nonconserved Phase-Field Model. Journal of Materials in Civil Engineering, 2014, 26(4): 684–691
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000874
2 Hou Y, Wang L, Pauli T, Sun W. Investigation of the Asphalt Self-healing Mechanism Using a Phase-Field Model. Journal of Materials in Civil Engineering, 2015, 27(3): 04014118
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001047
3 Ferne B W, Langdale P, Roundm N, Faircloughm R. Development of a Calibration Procedure for the U.K. Highways Agency Traffic-Speed Deflectometer. Transportation Research Record, 2009a, 2093(1): 111–117
https://doi.org/10.3141/2093-13
4 Ferne B W, Langdale P, Roundm N, Faircloughm R. Development of the UK Highways Agency Traffic Speed Deflectometer. Bearing Capacity of Roads, Railways and Airfields, London, Champaign, IL: Taylor & Francis Group, 2009b, 409–418.
5 Muller W B, Roberts J. Revised Approach to Assessing Traffic Speed Deflectometer Data and Field Validation of Deflection Bowl Predictions. International Journal of Pavement Engineering, 2013, 14(4): 388–402
https://doi.org/10.1080/10298436.2012.715646
6 Baltzer S, Pratt D, Weligamage J, Adamsen J, Hildebrand G. Continuous Bearing Capacity Profile of 18,000 km Australian Road Network in 5 Months. In: the 24th ARRB Conference Proceedings, Melbourne, Australia, 2010
7 Goktepe A B, Agar E, Lav A H. Advances in Backcalculating the Mechanical Properties of Flexible Pavements. Advances in Engineering Software, 2006, 37(7): 421–431
https://doi.org/10.1016/j.advengsoft.2005.10.001
8 Fritz J J. Flexible Pavement Response Evaluation Using the Semi-Analytical Finite Element Method. International Journal of Materials and Pavement Design, 2002, 3(2): 211–225
https://doi.org/10.1080/14680629.2002.9689923
9 Hu S, Hu X, Zhou F. Using Semi-Analytical Finite Element Method to Evaluate Stress Intensity Factors in Pavement Structure. Rilem International Conference on Cracking in Pavements, 2008
10 Zienkiewicz O C, Taylor R L. The finite element method for solid and structural mechanics. 6th edition, Elsevier Butterworth-Heinemann, Oxford, 2005
11 Liu P, Wang D, Oeser M, Chen X. Einsatz der Semi-Analytischen Finite-Elemente-Methode zur Beanspruchungszustände von Asphaltbefestigungen. Bauingenieur, 2014, 89(7/8): 333–339 (in German)
12 Liu P, Wang D, Oeser M. The Application of Semi-Analytical Finite Element Method Coupled with Infinite Element for Analysis of Asphalt Pavement Structural Response. Journal of Traffic and Transportation Engineering, 2015, 2(1): 48–58
13 Liu P, Wang D, Oeser M. Leistungsfähige semi-analytische Methoden zur Berechnung von Asphaltbefestigungen. Tangungsband, 3.Dresdner Asphalttage, 2013 (in German)
14 Kim J R, Kim W D, Kim S J. Parallel Computing Using Semianalytical Finite Element Method. AIAA Journal, 1994, 32(5): 1066–1071
https://doi.org/10.2514/3.12095
15 Zienkiewicz O C, Taylor R L. The Finite Element Method, Volume 1 The Basis. 5th edition, Elsevier Butterworth-Heinemann, Oxford, 2000
16 ABAQUS. ABAQUS analysis user’s manual. Dassault Systemes Simulia Corp., 2011
17 Gohl S. Vergleich der gemessenen mechanischen Beanspruchungen der Modellstraße der BASt mit den Berechnungsergebnissen ausgewählter Programme. TU Dresden, Professur für Straßenbau, Diplomarbeit, 2006 (In German).
18 Rabe R. Bau einer instrumentierten Modellstraße in Asphaltbauweise zur messtechnischen Erfassung der Beanspruchungssituation im Straßenaufbau. AP 03 342, interner Bericht, Bundesanstalt für Straßenwesen, Bergisch Gladbach, 2004 (In German)
19 Rabe R. Messtechnische Erfassung der Beanspruchungen im Straßenaufbau infolge LKW-Überfahrten über eine Modellstraße in Asphaltbauweise‘, AP 04 342, interner Bericht, Bundesanstalt für Straßenwesen, Bergisch Gladbach, 2007 (In German)
20 Rabe R. Angaben zum Aufbau der Modellstraße und Angabe von ausgewählten Ergebnissen und Materialkennwerten. Bergisch Gladbach, 2014 (In German)
Related articles from Frontiers Journals
[1] Tian ZHANG, He XIA, Weiwei GUO. Analysis on running safety of train on the bridge considering sudden change of wind load caused by wind barriers[J]. Front. Struct. Civ. Eng., 2018, 12(4): 558-567.
[2] Sergio A. MARTÍNEZ-GALVÁN, Miguel P. ROMO. Assessment of an alternative to deep foundations in compressible clays: the structural cell foundation[J]. Front. Struct. Civ. Eng., 2018, 12(1): 67-80.
[3] Priyanka GHOSH, S. RAJESH, J. SAI CHAND. Linear and nonlinear elastic analysis of closely spaced strip foundations using Pasternak model[J]. Front. Struct. Civ. Eng., 2017, 11(2): 228-243.
[4] Xin LIANG,Qian-gong CHENG,Jiu-jiang WU,Jian-ming CHEN. Model test of the group piles foundation of a high-speed railway bridge in mined-out area[J]. Front. Struct. Civ. Eng., 2016, 10(4): 488-498.
[5] Janaka J. KUMARA,Yoshiaki KIKUCHI,Takashi KURASHINA,Takahiro YAJIMA. Effects of inner sleeves on the inner frictional resistance of open-ended piles driven into sand[J]. Front. Struct. Civ. Eng., 2016, 10(4): 499-505.
[6] Wei-Yong WANG, Guo-Qiang LI, Bao-lin YU. An approach for evaluating fire resistance of high strength Q460 steel columns[J]. Front Struc Civil Eng, 2014, 8(1): 26-35.
[7] Mehmet Bar?? Can üLKER. Modeling of dynamic response of poroelastic soil layers under wave loading[J]. Front Struc Civil Eng, 2014, 8(1): 1-18.
[8] Mehdi VEISKARAMI, Ghasem HABIBAGAHI. Foundations bearing capacity subjected to seepage by the kinematic approach of the limit analysis[J]. Front Struc Civil Eng, 2013, 7(4): 446-455.
[9] Linjia BAI, Yunfeng ZHANG. Collapse fragility assessment of steel roof framings with force limiting devices under transient wind loading[J]. Front Struc Civil Eng, 2012, 6(3): 199-209.
[10] Xuexing CAO, Yunlong HE, Kun XIONG, . Confining pressure effect on dynamic response of high rockfill dam[J]. Front. Struct. Civ. Eng., 2010, 4(1): 116-126.
[11] Weiming GONG, Guoliang DAI, Haowen ZHANG. Experimental study on pile-end post-grouting piles for super-large bridge pile foundations[J]. Front Arch Civil Eng Chin, 2009, 3(2): 228-233.
[12] Hanlong LIU, Xuanming DING. Propagation characteristics of transient waves in low-strain integrity testing on cast-in-situ concrete thin-wall pipe piles[J]. Front Arch Civil Eng Chin, 2009, 3(2): 180-186.
[13] He XIA, Yushu DENG, Yongwei ZOU, Guido DE ROECK, Geert DEGRANDE. Dynamic analysis of rail transit elevated bridge with ladder track[J]. Front Arch Civil Eng Chin, 2009, 3(1): 2-8.
[14] YANG Junjie, PENG Guojun, XU Hanyong. Behavior of concrete-filled double skin steel tubular columns with octagon section under axial compression[J]. Front. Struct. Civ. Eng., 2008, 2(3): 205-210.
[15] PAN Hanming, GUO Yanlin, LIANG Shuo, PEI Shengxing, LIANG Weisheng, WANG Lewen. Stability analysis of large diameter thin-walled tube beam-columns[J]. Front. Struct. Civ. Eng., 2008, 2(2): 123-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed