Please wait a minute...

Frontiers of Structural and Civil Engineering

Front. Struct. Civ. Eng.    2018, Vol. 12 Issue (1) : 148-162     https://doi.org/10.1007/s11709-016-0375-5
RESEARCH ARTICLE |
Intermediate HSS bracing members during seismic excitations: modeling, design, and behavior
Madhar HADDAD()
Department of Architectural Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, UAE
Download: PDF(3750 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Concentric hollow structural section (HSS) bracing members are used frequently in steel framed structural systems to resist seismic excitations. Finite element modeling of the HSS braces that utilizes the true stress-strain curves produces hysteresis responses that are reasonable matches to the experimental response. True stress-strain curves are obtained from coupon tests or stub-column tests while utilizing an exponential function or strain hardening rule with a trial and error procedure to obtain the hysteresis behavior. In the current study, the true stress-strain curves are directly obtained from tests on stub-columns extracted from the full scale HSS bracing members away from the mid-length plastic hinge after cyclic testing. Two experimental tests (Shaback 2001 and Haddad 2004) were used to validate the model. Results indicate that the stress-strain curves for these braces are not unique. A refined damage accumulation model for ultra-low-cycle fatigue is implemented to predict fracture of the brace tests. The refined damage model is then used in the finite element modeling to predict fracture of braces in a chevron braced frame of an eight-storey building subjected to selected ground motions analyzed using OpenSees program. Results indicate that all braces could sustain the selected earthquake records without fracture.

Keywords HSS      FEM      stress-strain curves      damage model     
Corresponding Authors: Madhar HADDAD   
Online First Date: 06 April 2017    Issue Date: 08 March 2018
 Cite this article:   
Madhar HADDAD. Intermediate HSS bracing members during seismic excitations: modeling, design, and behavior[J]. Front. Struct. Civ. Eng., 2018, 12(1): 148-162.
 URL:  
http://journal.hep.com.cn/fsce/EN/10.1007/s11709-016-0375-5
http://journal.hep.com.cn/fsce/EN/Y2018/V12/I1/148
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Madhar HADDAD
specimen HSS section Lb (mm) Lb/r (mm) b/t gusset dimensions,
Lg× Wg× tg (mm)
initial imperfection (mm)
1Ba 127 × 127 × 8 3401 70.9 13.0 350 × 225 × 25.4 0.04
2A 152 × 152 × 8 3995 68.4 16.1 400 × 250 × 25.4 1.45
2B 152 × 152 × 9.5 3989 69.3 12.9 400 × 300 × 25.4 1.20
3A 127 × 127 × 6.4 4403 90.2 17.0 350 × 200 × 25.4 1.60
3B 127 × 127 × 8 4398 91.6 13.0 350 × 225 × 25.4 2.20
3C 127 × 127 × 9.5 4382 92.6 10.3 350 × 250 × 25.4 0.20
4A 152 × 152 × 8 4897 83.9 16.1 400 × 250 × 25.4 0.13
4B 152 × 152 × 9.5 4882 84.8 12.9 400 × 300 × 25.4 0.02
1b 152 × 152 × 8 4900 83.9 16.1 350 × 250 × 25.4 1.79
2 152 × 152 × 8 4900 83.9 16.1 350 × 250 × 25.4 2.98
3 152 × 152 × 8 4900 83.9 16.1 350 × 250 × 25.4 1.39
4 127 × 127 × 8 4400 91.7 13.0 400 × 225 × 25.4 0.60
5 127 × 127 × 8 4400 91.7 13.0 400 × 225 × 38.1 0.79
6 127 × 127 × 8 4400 91.7 13.0 400 × 225 × 50.8 0.60
7 127 × 127 × 8 3100 64.6 13.0 400 × 225 × 25.4 0.25
8 127 × 127 × 13 4400 96.3 7.0 400 × 350 × 25.4 0.79
9 127 × 127 × 13 4400 96.3 7.0 400 × 350 × 50.8 1.89
10 127 × 127 × 13 3500 76.6 7.0 400 × 350 × 25.4 0.30
a Shaback [1]; b Haddad [2]
Tab.1  Geometric properties of the HSS specimens with initial imperfection values
specimen average properties
monotonic true or cyclic
E (MPa) F y(MPa) εy(0.2%) E (MPa) F y (MPa) εy(0.2%)
127 × 127 × 6.4 196 461 0.002367 NA
127 × 127 × 8 191 421 0.002417 188 483 0.004412
127 × 127 × 13 NA 175 492 0.004461
152 × 152 × 8 202 422 0.002132 175 488 0.004440
152 × 152 × 9.5 198 448.33 0.002291 NA
Tab.2  Material properties of the HSS specimens
Fig.1  Engineering and true stress-strain curves with the elastic offsets
Fig.2  Specimen 4B with end connection
Fig.3  Effect of mesh density at mid-length plastic hinge on the significant cumulative plastic strain
Fig.4  Axial-hysteresis stress-strain loops: (a) experimental; (b) finite element analysis
specimen total (mm) flat (mm) thickness at HSS ends (mm) CSA-S16-09 (mm)
width depth width depth left Right flat (b-4t) t
1 152.68 152.89 123.12 117.54 7.81 7.82 120.6 7.95
2 152.70 152.91 123.16 118.10 7.73 7.80 120.6 7.95
3 152.60 153.11 120.10 121.91 7.78 7.79 120.6 7.95
4 127.41 127.67 100.92 93.84 7.77 7.87 95.2 7.95
5 127.50 127.71 100.65 93.71 7.87 7.88 95.2 7.95
6 127.42 127.73 100.87 92.70 7.88 7.84 95.2 7.95
7 127.53 127.72 100.88 92.49 7.82 7.94 95.2 7.95
8 127.80 127.72 78.25 74.59 12.78 12.76 76.2 12.7
9 127.96 127.56 79.94 73.94 12.84 12.79 76.2 12.7
10 127.55 127.79 86.09 80.71 12.85 12.83 76.2 12.7
Tab.3  Geometric measurements of HSS specimens
specimen cycle number
experimental/numerical
initial buckling first local buckling first cracking/damage model action fracture
1B 5 9 10 11
2A 5 8 9 9
2B 5 9 10 10
3A 4 8 9 9
3B 5 11 12 13
3C 4 14 16 17
4A 5 9 10 10
4B 5 9 11 12
1 5 8 10 10
2 5 8 9 9
3 5 8 9 10
4 5 9 9 11
5 5 8 9 10
6 6 7 7 7
7 5 7 8 9
8 5 18 22 31
9 6 15 18 23
10 6 13 18 22
Tab.4  Experimental versus numerical peak points
Fig.5  Axial and lateral hysteresis loops
Fig.6  (a) Local buckling with small size bent; (b) fracture of specimen 4B
Fig.7  (a) Axial strain hysteresis loops; (b) axial displacement versus axial strain hysteresis loops
Fig.8  (a) Axial strain hysteresis loops; (b) critical plastic strain
Fig.9  Prototype building studied
no. record sequence number earthquake name station name mag. comp.
1 57 1971 San Fernando Castaic- Old Ridge Route 6.6 291°
2 767 1989 Loma Prieta Gilroy Array #3 6.9
3 986 1994 Northridge LA- Brentwood VA Hospital 6.7 195°
4 1006 1994 Northridge LA- UCLA Grounds 6.7 90°
Tab.5  Characteristics of ground motion earthquake records
Fig.10  Axial hysteresis loops
Fig.11  Axial deformation time histories for the left (a) and right (b) braces under stepwise incremented ground motion record No. 767
Fig.12  Significant plastic strain for the left (L) and right (R) braces under magnified displacement histories of SF = 2.0, record No. 767
1 Shaback B, Brown  T. Behaviour of square hollow structural steel braces with end connections under reversed cyclic axial loading. Canadian Journal of Civil Engineering, 2003, 30(4): 745–753
2 Haddad M. Seismic design of concentrically braced steel frames for earthquakes. PhD Dissertation, Department of Civil, the University of Calgary, Calgary, A B, Canada, 2004
3 American Institute of Steel Construction (AISC). Seismic provisions for structural steel buildings, Chicago, IL, 2005
4 American Institute of Steel Construction (AISC). Seismic provisions for structural steel buildings. Chicago, IL, 2010
5 American Institute of Steel Construction (AISC). Seismic provisions for structural steel buildings. Chicago, IL, 2015
6 CSA. CSA-S16–09, Design of Steel Structures. Canadian Standards Association, Mississauga, ON, 2009
7 CSA. CSA-S16–14, Design of Steel Structures. Canadian Standards Association, Mississauga, ON, 2014
8 Wijesundara K K,  Nascimbene R,  Rassati G A. Modeling of different bracing configurations in multi-storey concentrically braced frames using a fiber-beam based approach. Journal of Constructional Steel Research, 2014, 101: 426–436
9 CSA. General requirements for rolled or welded structural quality steel. CAN/CSA-40.21–98, Canadian Standards Association, Rexdale, Ontario, 1998
10 ASTM A500. Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes
11 Astaneh-Asl A, Goel  S C, Hanson  R D. Cyclic out-of-plane buckling of double-angle bracing. Journal of Structural Engineering, 1985, 111(5): 1135–1153
12 Abaqus.User’s Manual. Version, 11.6, Hibbitt, Karlsson, and Sorensen, Inc, Providence, RI, 2011
13 Galambos T V, ed. Guide to Stability Design Criteria for Metal Structures. John Wiley and Sons Inc. 5th ed. 1988, 814–822
14 MSC/PATRAN. User’s Guide and reference manuals, MSC Software Corporation, Santa Ana, CA, 2011.
15 Ziegler H. A Modification of Prager’s Hardening Rule. Quarterly of Applied Mathematics, 1959, 17: 55–65
16 Huang Y, Mahin  S A. A cyclic damage plasticity model: implementation and applications. Proceedings of the10th International LS-DYNA Users Conference, Dearborn, Michigan USA. June 8–10, 2008, 14
17 American Institute of Steel Construction (AISC). Specifications for Structural Steel Design. Chicago, IL, 2010
18 CEB. Eurocode 3: Design of Steel Structures – Part 1–1: General Rules for Buildings. EN 1993–1-1:2005(E). European Committee for Standardization, Brussels, Belgium, 2005
19 Cheng J J R,  Grondin G Y,  Yam M C H. Design and behavior of gusset plate connections. Steel Connection IV Workshop, Roanoke, VA, 2000
20 Hsiao J K, Tempinson  D W, Li  J. The effect of frame deformation on the welded gusset plates for diagonal bracing elements loaded in tension. Advanced Steel Construction, 2012, 8(4): 398–421
21 Hassan M S, Goggins  J, and Salawdeh S. Characterising the effect of global and local geometric imperfections on the numerical performance of a brace member. Journal of Physics: Conference Series, 2015, 628(1), 012063
22 Ziemian R. Guide to Stability Design for Metal Structures. Hoboken: John Wiley and Sons, 2010
23 Chajes A. Principles of Structural Stability Theory. New Jersey: Prentice-Hall, Inc. Englewood Cliffs, 1974
24 Hu J W. Seismic analysis and evaluation of several recentering braced frame structures. Proceedings of the Institution of Mechanical Engineers Part C. Journal of Mechanical Engineering Part C Science, 2014, 228(5): 781–798
25 Wijesundara K K,  Bolognini D,  Nascimbene R,  Calvi G M. Review of design parameters of concentrically braced frames with RHS shape braces. Journal of Earthquake Engineering, 2009, 13(sup1 S1): 109–131
26 Nascimbene R, Rassati  G A, Wijesundara  K. Numerical simulation of gusset plate connections with rectangular hollow section shape brace under quasi-static cyclic loading. Journal of Constructional Steel Research, 2012, 70: 177–189
27 D’Aniello M, La Manna  A G, Portioli  F, Landolfo R. Modelling aspects of the seismic response of steel concentric braced frames. Steel and Composite Structures. International Journal (Toronto, Ont.), 2013, 15(5): 539–566
28 D’Aniello M, La Manna  A G, Portioli  F, Landolfo R. The influence of out-of-straightness imperfection in Physical-Theory models of bracing members on seismic performance assessment of concentric braced structures. Structural Design of Tall and Special Buildings, 2015, 24(3): 176–197
29 Li P, Wu  M. Parametric study of cable-stiffened single-layer cylindrical latticed shells with different supporting conditions. Journal of Constructional Steel Research, 2016, 121: 457–467
30 Haddad M, Tremblay  R. Influence of connection design on the inelastic seismic response of HSS steel bracing members. In: Proceedings of the 11th International Symposium and IIW International Conference on Tubular Structures. Packer J, Willibad S, eds. Leiden, The Netherlands: Taylor & Francis, 2006, 639–646
31 Robert N, Tremblay  R. Seismic design and behaviour of chevron steel braced frames. Proceedings of the 12th world conference on Earthquake Engineering, 12WCEE 2000, Auckland, New Zealand, 30 January- 4 February, 2000, 2413
32 Chen L, Tirca  L. Simulating the seismic response of concentrically braced frames using physical theory brace models. Open Journal of Civil Engineering, 2013, 3(02): 69–81
33 Tirca L, Chen  L, Tremblay R. Assessing collapse safety of CBF buildings subjected to crustal and subduction earthquakes. Journal of Constructional Steel Research, 2015, 115: 47–61
34 NRCC. National Building Code of Canada, 13th ed., National Research Council of Canada, Ottawa, ON, 2010
35 McKenna F, Fenves  G L. Open System for Earthquake Engineering Simulation (OpenSees), Pacific Earthquake Engineering Research Center (PEER), University of California, Berkeley, C A, 2014. ()
36 Aguero A, Izvernari  C, Tremblay R. Modelling of the seismic response of concentrically braced steel frames using the OpenSees analysis environment. International Journal of Advanced Steel Construction, 2006, 2(3): 242–274
37 Uriz P, Filippou  F C, Mahin  S A. Model for cyclic inelastic buckling of steel braces. Journal of Structural Engineering, 2008, 134(4): 619–628
38 PEER. PEER Strong Ground Motion Database. Pacific Earthquake Engineering Center. 2011 ()
39 D’Aniello M, Costanzo  S, Landolfo R. The influence of beam stiffness on seismic response of chevron concentric bracings. Journal of Constructional Steel Research, 2015, 112: 305–324
40 Tenchini A, D’Aniello  M, Rebelo C,  Landolfo R,  da Silva L,  Lima L. High strength steel in chevron concentrically braced frames designed according to Eurocode 8. Engineering Structures, 2016, 124: 167–185
Related articles from Frontiers Journals
[1] Jinhai ZHAO, Hesheng TANG, Songtao XUE. A new fracture criterion for peridynamic and dual-horizon peridynamics[J]. Front. Struct. Civ. Eng., 2018, 12(4): 629-641.
[2] Nazim Abdul NARIMAN. Thermal fluid-structure interaction and coupled thermal-stress analysis in a cable stayed bridge exposed to fire[J]. Front. Struct. Civ. Eng., 2018, 12(4): 609-628.
[3] Jinhai ZHAO, Hesheng TANG, Songtao XUE. Peridynamics versus XFEM: a comparative study for quasi-static crack problems[J]. Front. Struct. Civ. Eng., 2018, 12(4): 548-557.
[4] Fillitsa KARANTONI, Stavroula PANTAZOPOULOU, Athanasios GANAS. Confined masonry as practical seismic construction alternative–the experience from the 2014 Cephalonia Earthquake[J]. Front. Struct. Civ. Eng., 2018, 12(3): 270-290.
[5] Himanshu PATHAK,Akhilendra SINGH,I.V. SINGH,S. K. YADAV. Fatigue crack growth simulations of 3-D linear elastic cracks under thermal load by XFEM[J]. Front. Struct. Civ. Eng., 2015, 9(4): 359-382.
[6] M. H. NGUYEN-THOI,L. Le-ANH,V. Ho-HUU,H. Dang-TRUNG,T. NGUYEN-THOI. An extended cell-based smoothed discrete shear gap method (XCS-FEM-DSG3) for free vibration analysis of cracked Reissner-Mindlin shells[J]. Front. Struct. Civ. Eng., 2015, 9(4): 341-358.
[7] Sachin KUMAR,A. S. SHEDBALE,I. V. SINGH,B. K. MISHRA. Elasto-plastic fatigue crack growth analysis of plane problems in the presence of flaws using XFEM[J]. Front. Struct. Civ. Eng., 2015, 9(4): 420-440.
[8] Xiaonong GUO,Zhe XIONG,Zuyan SHEN. Flexural-torsional buckling behavior of aluminum alloy beams[J]. Front. Struct. Civ. Eng., 2015, 9(2): 163-175.
[9] Kristine VANDENBOER,Vera van BEEK,Adam BEZUIJEN. 3D finite element method (FEM) simulation of groundwater flow during backward erosion piping[J]. Front. Struct. Civ. Eng., 2014, 8(2): 160-166.
[10] Konstantinos P. TZIVAKOS,Michael J. KAVVADAS. Numerical investigation of the ultimate lateral resistance of piles in soft clay[J]. Front. Struct. Civ. Eng., 2014, 8(2): 194-200.
[11] Dong WANG, Linbing WANG, Guoqing ZHOU. Fatigue of asphalt binder, mastic and mixture at low temperature[J]. Front Struc Civil Eng, 2012, 6(2): 166-175.
[12] Vladimír KOMPI, Zuzana MURINKOV, Sergey RJASANOW, Richards GRZIBOVSKIS, Qinghua QIN, . Computational simulation methods for fiber reinforced composites [J]. Front. Struct. Civ. Eng., 2010, 4(3): 396-401.
[13] Zizi LU, Yongming LIU, . Concurrent fatigue crack growth simulation using extended finite element method[J]. Front. Struct. Civ. Eng., 2010, 4(3): 339-347.
[14] Youngji JIN, Xiaohua BAO, Yoshimitsu KONDO, Feng ZHANG, . Numerical evaluation of group-pile foundation subjected to cyclic horizontal load[J]. Front. Struct. Civ. Eng., 2010, 4(2): 196-207.
[15] Dakuo FENG, Ga ZHANG, Jianmin ZHANG, . Three-dimensional seismic response analysis of a concrete-faced rockfill dam on overburden layers[J]. Front. Struct. Civ. Eng., 2010, 4(2): 258-266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed