Please wait a minute...

Frontiers of Structural and Civil Engineering

Front. Struct. Civ. Eng.    2016, Vol. 10 Issue (2) : 142-149     https://doi.org/10.1007/s11709-016-0342-1
Research Article |
Advanced cement based nanocomposites reinforced with MWCNTs and CNFs
Emmanuel E. GDOUTOS1,*(),Maria S. KONSTA-GDOUTOS1,Panagiotis A. DANOGLIDIS1,Surendra P. SHAH2
1. Department of Civil Engineering, Democritus University of Thrace, GR 671 00 Xanthi, Greece
2. Northwestern University, Evanston, IL 60208, USA
Download: PDF(702 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cementitious materials reinforced with well dispersed multiwall carbon nanotubes (MWCNTs) and carbon nanofibers (CNFs) at the nanoscale were fabricated and tested. The MWCNTs and CNFs were dispersed by the application of ultrasonic energy and the use of a superplasticizer. Mechanical and fracture properties including flexural strength, Young’s modulus, flexural and fracture toughness were measured and compared with similarly processed reference cement based mixes without the nano-reinforcement. The MWCNTs and CNFs reinforced mortars exhibited superior properties demonstrated by a significant improvement in flexural strength (106%), Young’s modulus (95%), flexural toughness (105%), effective crack length (30%) and fracture toughness (120%).

Keywords multi-walled carbon nanotubes      carbon nanofibers      mortars      toughness      Young’s modulus     
Corresponding Authors: Emmanuel E. GDOUTOS   
Online First Date: 08 April 2016    Issue Date: 11 May 2016
 Cite this article:   
Emmanuel E. GDOUTOS,Maria S. KONSTA-GDOUTOS,Panagiotis A. DANOGLIDIS, et al. Advanced cement based nanocomposites reinforced with MWCNTs and CNFs[J]. Front. Struct. Civ. Eng., 2016, 10(2): 142-149.
 URL:  
http://journal.hep.com.cn/fsce/EN/10.1007/s11709-016-0342-1
http://journal.hep.com.cn/fsce/EN/Y2016/V10/I2/142
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Emmanuel E. GDOUTOS
Maria S. KONSTA-GDOUTOS
Panagiotis A. DANOGLIDIS
Surendra P. SHAH
fiber type diameter,(nm) length,(mm) purity,(%) surface area,(m2/gr) bulk density,(gr/cm3 ) aspect ratio fiber count
MWCNTs 20?45 ≥10 >98 >200 ≤0.18 300 36.1 × 1010
CNFs 50?200 30?100 - 43 0.016?0.048 520 4.0 × 1010
Tab.1  Properties and fiber count of MWCNTs and CNFs
Fig.1  Typical load-deflection curve for a 28d mortar reinforced with well dispersed MWCNTs at an amount of 0.1 wt% of cement.
Fig.2  Experimental setup of three point bending test
Fig.3  Experimental setup of fracture mechanics test
Fig.4  Flexural strength of 28d mortar nanocomposites reinforced at an amount of 0.1 wt% of cement MWCNTs and CNFs
Fig.5  SEM image of the fracture surface of a cementitious nanocomposite reinforced with 0.1% wt CNFs showing the morphology of the carbon nanofibers
age Young’s modulus (GPa)40 mm ×40 mm ×160 mm Young’s modulus (GPa)*notched 20 mm ×20 mm ×80 mm
M 3 9.18 9.89
7 10.83 12.00
28 13.52 14.28
M+MWCNTs 0.1 wt% 3 16.01 16.68
7 18.06 18.43
28 27.13 27.47
M+CNFs 0.1 wt% 3 11.75 12.21
7 16.98 16.86
28 27.08 27.74
Tab.2  Young’s modulus of MWCNT/CNF reinforced mortars
Fig.6  Flexural toughness of 28d mortar nanocomposites reinforced at an amount of 0.1 wt% of cement MWCNTs and CNFs
Fig.7  Load-CMOD curves for 28 day neat mortar and mortar reinforced with MWCNTs or CNFs at amount of 0.1wt% of cement (Linear elastic fracture mechanics)
Fig.8  Load-CMOD curves for 28 day neat mortar and mortar reinforced with MWCNTs or CNFs at amount of 0.1wt% of cement (Two-parameter fracture model)
Fig.9  Effective crack length of 28-d mortar nanocomposites reinforced at an amount of 0.1 wt% of cement MWCNTs and CNFs
Fig.10  Fracture toughness of OPC mortar and mortars reinforced at an amount of 0.1 wt% of cement MWCNTs and CNFs
1 Belytschko T, Xiao S P, Schatz G C, Ruoff R. Atomistic simulations of nanotube fracture. Physical Review B: Condensed Matter and Materials Physics, 2002, 65(23): 235430–235437
https://doi.org/10.1103/PhysRevB.65.235430
2 Shah S P, Konsta-Gdoutos M S, Metaxa Z S. Highly Dispersed Carbon Nanotube-Reinforced Cement-Based Materials. US Patent, WO/2009/099640, 2009
3 Hersam M C, Seo J-W T, Shah S P, Konsta-Gdoutos M S, Metaxa Z S. Highly Concentrated Carbon Nanotube Suspensions for Cementitious Materials and Method of Reinforcing Such Materials. US Patent, US8865107 B2 and US201200428 06 A1, 2014
4 Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Highly Dispersed Carbon Nanotubes Reinforced Cement Based Materials. Cement and Concrete Research, 2010, 40(7): 1052–1059
https://doi.org/10.1016/j.cemconres.2010.02.015
5 Metaxa Z S, Konsta-Gdoutos M S, Shah S P. Carbon Nanotubes Reinforced Concrete, ACI Special Publication on Nanotechnology of Concrete. The Next Big Thing is Small, 2009, 267, 11–20
6 Shah S P, Konsta-Gdoutos M S, Metaxa Z S. Exploration of Fracture Characteristics, Nanoscale Properties and Nanostructure of Cementitious Matrices with Carbon Nanotubes and Carbon Nanofibers. Seoul: Korea Concrete Institute, 2010
7 Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Multi-scale Mechanical and Fracture Characteristics and Early-age Strain Capacity of High Performance Carbon Nanotube/Cement Nanocomposites. Cement and Concrete Composites, 2010, 32(2): 110–115
https://doi.org/10.1016/j.cemconcomp.2009.10.007
8 Metaxa Z S, Konsta-Gdoutos M S, Shah S P. Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency. Cement and Concrete Composites, 2010, 32: 110–115
9 Gdoutos E E. Fracture mechanics: An introduction. New York: Springer, 2006
10 Jenq Y, Shah S P. Two parameter fracture model for concrete. Journal of Engineering Mechanics, 1985, 111(10): 1227–1241
https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227)
11 Siddique R, Mehta A. Effect of carbon nanotubes on properties of cement mortars. Construction and Building Materials, 2014, 50, 116–129
12 Yazdani N, Mohanam V. Carbon Nano-Tube and Nano-Fiber in Cement Mortar: Effect of Dosage Rate and Water- Cement Ratio. International Journal of Material Science, 2014, 4(2): 45–52
https://doi.org/10.14355/ijmsci.2014.0402.01
13 Sobolkina A, Mechtcherine V, Khavrus V, Maier D, Mende M, Ritschel M, Leonhardt A. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cement and Concrete Composites, 2012, 34(10): 1104–1113
https://doi.org/10.1016/j.cemconcomp.2012.07.008
14 Esmaeili J, Mohammadjafari A R. Increasing flexural strength and toughness of cement mortar using multi-walled Carbon nanotubes. International Journal of Nano Dimention, 2014, 5: 399–407
15 Lawrence J G, Berhan L M, Nadarajah A. Structureal transformation of vapor grown carbon nanofiber studied by HRTEM. Journal of Nanoparticle Research, 2008, 10(7): 1155–1167
https://doi.org/10.1007/s11051-007-9341-4
16 Tibbetts G G, Lake M L, Strong K L, Rice B P. A review of the fabrication andproperties of vapor-grown carbon nanofiber/polymer composites. Composites Science and Technology, 2007, 67(7-8): 1709–1718
https://doi.org/10.1016/j.compscitech.2006.06.015
17 Chen Y L, Liu B, He X Q, Huang Y, Hwang K C. Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites Comp. Sciences et Techniques (Paris), 2010, 70: 1360–1367
18 Chen Y, Wang S, Liu B, Zhang J. Effects of geometrical and mechanical properties of fiber and matrix on composite fracture toughness. Composite Structures, 2015, 122: 496–506
Related articles from Frontiers Journals
[1] Rao Arsalan KHUSHNOOD,Sajjad AHMAD,Luciana RESTUCCIA,Consuelo SPOTO,Pravin JAGDALE,Jean-Marc TULLIANI,Giuseppe Andrea FERRO. Carbonized nano/microparticles for enhanced mechanical properties and electromagnetic interference shielding of cementitious materials[J]. Front. Struct. Civ. Eng., 2016, 10(2): 209-213.
[2] Pattabhi R. BUDARAPU,Sudhir Sastry YB,Brahmanandam JAVVAJI,D. Roy MAHAPATRA. Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium[J]. Front. Struct. Civ. Eng., 2014, 8(2): 151-159.
[3] ZHAI Yue, MA Guowei, HU Changming, ZHAO Junhai. Dynamic failure analysis on granite under uniaxial impact compressive load[J]. Front. Struct. Civ. Eng., 2008, 2(3): 253-260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed