Please wait a minute...

Frontiers of Structural and Civil Engineering

Front. Struct. Civ. Eng.    2016, Vol. 10 Issue (1) : 30-43     https://doi.org/10.1007/s11709-016-0318-1
RESEARCH ARTICLE |
Wheel tracking methods to evaluate moisture sensitivity of hot-mix asphalt mixtures
Jie HAN1,*(),Harihar Shiwakoti2
1. Department of Civil, Environmental, and Architectural Engineering, the University of Kansas, Lawrence, KS 66044, USA
2. Virginia Department of Transportation, 1401 E. Broad St., Richmond, VA 23219, USA
Download: PDF(1301 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Existing test methods to determine moisture sensitivity in hot-mix asphalt (HMA) mixtures are time consuming and inconsistent. This research focused on wheel tracking devices to evaluate moisture sensitivity. The Asphalt Pavement Analyzer (APA) and the Hamburg Wheel Tracking Device (HWTD) were used for this research. Compacted cylindrical samples were fabricated using a Superpave Gyratory compactor. This study selected two most commonly used mixtures, SM-12.5A with PG 64-22 binder in overlay projects and SM-19A mixtures with PG 64-22 binder for major modification projects at Kansas Department of Transportation. Test results show that APA tests could induce stripping in most samples without any anti-stripping agent, which could be identified visually. However, APA results did not indicate any stripping inflection point while the HWTD results showed stripping inflection points, which are important to identify stripping potential of mixtures. The APA results show that wet tests are severe at lower temperatures. The HWTD results show improvement in the performance using anti-stripping agents at later stage. The HWTD test is more effective as a rapid test method in case of determining moisture sensitivity. Laboratory results from this study should be verified and correlated with field performance.

Keywords hot-mix asphalt      moisture sensitivity      rutting      wheel tracking test     
Corresponding Authors: Jie HAN   
Online First Date: 11 January 2016    Issue Date: 19 January 2016
 Cite this article:   
Jie HAN,Harihar Shiwakoti. Wheel tracking methods to evaluate moisture sensitivity of hot-mix asphalt mixtures[J]. Front. Struct. Civ. Eng., 2016, 10(1): 30-43.
 URL:  
http://journal.hep.com.cn/fsce/EN/10.1007/s11709-016-0318-1
http://journal.hep.com.cn/fsce/EN/Y2016/V10/I1/30
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie HAN
Harihar Shiwakoti
APA HWTD
diameter of sample, d (mm) 150 150
height of sample, h (mm) 75 60
Tab.1  Samples made for APA and Hamburg tests
KTRAN-KU-KSU project D2: 2G06015A D3: 3G06020A D5: 5G06016A D6: 6G06011A D6: 6G06016A D6: 6G07002A
District 2 District 3 District 5 District 6 District 6 District 6
project No. 106-KA-0349-01 183-82K-6377-01 42-106 KA-0285-0 54-60K-7411-01 54-60K-7411-01 54-88k-7283-01
county Cloud-Jewell Rooks Barber-Kingman Meade Meade Meade
specs: 1990 Std.& 90 M-272-R5 1990 Std. & 90 M-230-R15 1990 Std. & 90 M-272-R15 1990 Std.& 90 M-230-R15 1990 Std. & 90 M-230-R15 1990 Std.& 90 M-230-15
contractor US Asphalt Co. APAC- Shears Division APAC-Shears Division APAC-Shears Division APAC-Shears Division J&R Sand Company, Inc.
combined Sp. Gr. 2.616 2.614 2.543 2.578 2.577 2.581
project ESAL’s (M) 1.2 1.9 0.5 7.9 7.9 6.10
mixing temp range (F) 305- 315 290-300 307-317 309-317 306-326 311-320
molding temp range (F) 285- 295 275-285 286-295 286-295 290-315 286-295
mix designation SM- 9.5 A SM- 19 A SM- 9.5 A SM- 19 A SM- 19 A SM- 19 A
% air void design
specs min 2 2 2 2 2 2
specs max 6 6 6 6 6 6
% VFA @ design
specs min 65 65 65 65 65 65
specs max 78 78 78 76 76 76
% VMA @ design
specs min 14 13 14 13 13 13
dust/binder ratio
specs min 0.6 0.6 0.6 0.6 0.6 0.6
specs max 1.2 1.2 1.2 1.2 1.2 1.2
tensile strength ratio 80 80 80 80 80 80
sand equivalent (min) 40 40 40 45 45 45
uncompacted Voids (min) 42 42 42 42 42 42
course aggr. angularity (%)
1 face 75 50 75 60 60 60
% flat & elongated pieces (max) 10 10 10 10 10 10
aggregate type and ratio CS 1A (40%) CS 1 (23%) CS 1A (20%) CG 1 (20%) CG 1 (18%) CG 1 (15%)
CS 1B (10%) CS 1B (30%) CS 1B (15%) CG 2 (10%) CG 2 (10%) CG 2 (15%)
CS 2 (15%) CS 2C (12%) CS 2A (20%) CG 3 (10%) CG 3 (27%) CG 4 (15%)
SSG 1 (10%) SSG 1 (35%) CS 2 (10%) CG 4 (25%) CG 4 (20%) CG 5 (20%)
SSG 2 (25%) SSG 3 (35%) SSG 2 (25%) SSG 2 (25%) SSG 1 (35%)
SSG 4 (10%)
mass of each specimen (g) 2950 2980 2900 2880 2950 2970
No. of samples with anti-stripping agent 6 6 6 6 6 6
No. of samples without anti-stripping agent 6 6 6 6 6 6
total mass 35400 35760 34800 34560 35400 35640
binder type PG 64-22 PG 64-22 PG 64-22 PG 64-22 PG 70-28 PG 64-22
anti-stripping agent type Arr-maz Arr-maz Arr-maz LA-2 Arr-Mazz, LA-2 Arr-Mazz, LA-2 AD-Here HP Plus
design % asphalt 5.5 5.1 6.75 5.15 5.00 4.70
asphalt source Sinclair, Phillipsburg Sinclair Valero-Ark City SEM Dodge City SEM-Muskogee SEM Mat. DC, KS
Sp. Gr. of AC 1.0264
design % anti-stripping agent 0.3 0.3 0.3 0.3 0.25 0.5
expected Gmm 2.444 2.466 2.377 2.437 2.435 2.435
obtained Gmm 2.454 2.461 2.341 2.433 2.428 2.402
Nini gyrations 7 7 7 8 8 8
Ndes gyrations 75 75 75 100 100 100
Nmax gyrations 115 115 115 160 160 160
Tab.2  Project information
No. District design number mix laboratory designation number type of test done
1 2 2G06015A 9.5 A T3 (w/o anti-stripping) wet (50°C)
2 2 2G06015A 9.5 A T5 (w anti-stripping) wet (50°C)
3 3 3G06020A SM-19A T13 (w/o anti-stripping) wet (50°C)
4 3 3G06020A SM-19A T15 (w anti-stripping) wet (50°C)
5 5 5G06016A 9.5 A T7 (w/o anti-stripping) wet (50°C)
6 5 5G06016A 9.5 A T11 (w anti-stripping) wet (50°C)
7 6 6G06011A SM-19A T18 (w/o anti-stripping) wet (50°C)
8 6 6G06011A SM-19A T20(w anti-stripping) wet (50°C)
9 6* 6G07002A SM-19A T23 (w/o anti-stripping) wet (50°C)
10 6* 6G07002A SM-19A T25 (w anti-stripping) wet (50°C)
11 6 6G06016A SM-19A T28 (w/o anti-stripping) wet (50°C)
12 6 6G06016A SM-19A T30 (w anti-stripping) wet (50°C)
Tab.3  Summary of tests carried out on different mixes.
Fig.1  Stripping in samples without an anti-stripping agent (left) and non-stripping with an anti-stripping agent (right)
Fig.2  Rut depth vs. number of cycles from the APA and the HWTD tests of D2-2G06015A mix
Fig.3  Rut depth vs. number of cycles from the APA and the HWTD tests of D3-3G06020A mix
Fig.4  Rut depth vs. number of cycles from APA and the HWTD tests of D5-5G06016A mix
Fig.5  Rut depth vs. number of cycles from the APA and the HWTD tests of D6-6G06011A mix
Fig.6  Rut depth vs. number of cycles from the APA and the HWTD tests of D6-6G06016A mix
Fig.7  Rut depth vs. number of cycles from the APA tests of D6-6G07002A mixes prepared at KSU and KU
Fig.8  Rut depth vs. number of cycles from the APA and the HWTD tests of D6-6G07002A mix
No. District design number mix laboratory design. number APA tests HWTD tests
stripping inflection point benefit of anti-stripping agent visual inspect. stripping inflection point benefit of anti-stripping agent
1 2 2G06015A 9.5A T3 (w/o anti-stripping agent) no stripping, loss of bonding at about 1,500 cycles
2 2 2G06015A 9.5A T5 (w anti-stripping agent) no negative impact no stripping no benefit observed
3 3 3G06020A SM-19A T13 (w/o anti-stripping agent) no stripping at about 4,500 cycles
4 3 3G06020A SM-19A T15 (w anti-stripping agent) no no no stripping no benefit observed only at later stage
5 5 5G06016A 9.5A T7 (w/o anti-stripping agent) no stripping at about 1,500 cycles
6 5 5G06016A 9.5A T11 (w anti-stripping agent) no negative impact no stripping at about 2,000 cycles slight benefit
7 6 6G06011A SM-19A T18 (w/o anti-stripping agent) no no stripping no
8 6 6G06011A SM-19A T20(w anti-stripping agent) no negative impact no stripping no negative impact
9 6 6G07002A SM-19A T23 (w/o anti-stripping agent) no stripping at about 6,000 cycles
10 6 6G07002A SM-19A T25 (w anti-stripping agent) no slight benefit no stripping no benefit observed in later stage
11 6 6G06016A SM-19A T28 (w/o anti-stripping agent) no no stripping no
12 6 6G06016A SM-19A T30 (w anti-stripping agent) no no no stripping no benefit observed
Tab.4  Summary of test information and results
1 Kansas Department of Transportation (KDOT). Kansas Test Method KT-56: Resistance of Compacted Asphalt Mixture to Moisture Induced Damage, 2007
2 American Association of State Highway Transportation Officials (AASHTO). Standard Method of Test for Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage (AASHTO T283), 2007
3 Solaimanian  M, Bonaquist  R F, Tandon  V. Improved Conditioning and Testing Procedures for HMA Moisture Susceptibility, NCHRP Report 589, Transportation Research Board, Washington, D C, 2007
4 ASTM International. ASTM D4867 / D4867M–09 Standard Test Method for Effect of Moisture on Asphalt Concrete Paving Mixtures. ASTM International, West Conshohocken, PA, 2009
5 Gogula  A, Hossain  M, Boyer  J, Romanoschi  S. Effect of PG binder grade and source on performance of Superpave mixtures under Hamburg Wheel Tester. Proceedings of the 2003 Mid-Continent Transportation Research Symposium. Ames, Iowa, <Date>August</Date>, 2003
6 Cross  S A, Voth  M D. Effects of sample preconditioning on Asphalt Pavement Analyzer (APA) wet rut depths. Paper presented at the 80th Annual Transportation Research Board Meeting, Washington, D C, 2001, 20
7 Little D,  Jones  D. Chemical and mechanical processes of moisture damage in hot mix asphalt pavements. Moisture Sensitivity of Asphalt Pavements. a national seminar, San Diego, <Date>February 4 to 6</Date>, 2003, 37–70
8 Kennedy  T W, Roberts  F L, Anagnos  J N. Texas Boiling Test for Evaluating Moisture Susceptibility of Asphalt Mixtures. Research Report 253–5, Center for Transportation Research, the University of Texas at Austin, <Date>January</Date>, 1984
9 Kennedy  T W, Roberts  F L, Lee  K W, Anagnos  J N. Texas Freeze–Thaw Pedestal Test for Evaluating Moisture Susceptibility for Asphalt Mixtures. Research Report 253–3, Center for Transportation Research, the University of Texas at Austin, <Date>February</Date>, 1982
10 Lottman  R P. Predicting Moisture-induced Damage to Asphaltic Concrete: Field Evaluation. NCHRP Report 246, Transportation Research Board, National Research Council, Washington, D C, 1982
11 Tunnicliff  D G, Root  R E. Use of Anti-stripping Additives in Asphaltic Concrete Mixtures, NCHRP Report 274, Laboratory phase. Transportation Research Board, National Research Council, Washington, D C, 1984
12 Al-Swailmi  S, Terrel  R L. Evaluation of water damage of asphalt concrete mixtures using the Environmental Conditioning System (ECS). Journal of the Association of Asphalt Paving Technologists, 1992, 61: 405–445
13 Lai  J S. Development of a Laboratory Rutting Resistance Testing Method for Asphalt Mixes. Project No. 8717, Georgia Department of Transportation, Georgia, USA, 1989
14 Stuart  K D, Youtcheff  J S. Understanding the Performance of Modified Asphalt Binders in Mixtures: Low-Temperature Properties. FHWA RD-02–074. Federal Highway Administration, Turner-Fairbank Highway Research Center, McLean, VA, 2002
15 Rickards  I J, Gabrawy  T. Fatigue testing of asphalt to improve the discrimination of moisture sensitivity in aggregate and bitumen systems. In: Proceedings of the 21st Australian Road Research Board. Cairns, Queensland, Australia, <Date>18–23 May</Date>, 2003, 243–255.
16 Peterson  R L, Mahboub  K C, Anderson  R M, Masad  E, Tashman  L. Comparing Superpave gyratory compactor data to field cores. Journal of Materials in Civil Engineering, 2004, 16(1): 78–83
17 West  R W, Zhang  J, Cooley  A. Evaluation of Asphalt Pavement Analyser for Moisture Sensitivity Testing. National Center for Asphalt Technology (NCAT) Report 04–04, 2004, 1–23
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed