Please wait a minute...

Frontiers of Structural and Civil Engineering

Front. Struct. Civ. Eng.    2016, Vol. 10 Issue (1) : 72-80
A wind tunnel study on control methods for cable dry-galloping
Hung D. VO(),Hiroshi KATSUCHI,Hitoshi YAMADA,Mayuko NISHIO
Department of Civil Engineering, Yokohama National University, Yokohama 240-8501, Japan
Download: PDF(2795 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

The common vibration of cable caused by rain-wind combination has been known as most typical type and a lot kind of its countermeasures has been proposed for suppressing this phenomenon. Recently, stayed-cables were also proved that they could be excited in dry state (without rain), which is called dry-galloping. Recently, its mechanisms have been explained by axial flow, Reynolds number and so on. To clarify the characteristics of this galloping, wind tunnel test of a cable model with various kinds of wind angle was conducted. Then, three types of countermeasure were examined to suppress dry- galloping of bridge cable. The tests confirmed that the occurrence of dry-galloping depends on relative wind attacked angles and onset reduced wind speed. Furthermore, single spiral wire, double spiral wire and circular ring were found to have high effectiveness in mitigating this galloping when those are installed properly.

Keywords dry-galloping      wind-relative angle      single spiral wire      double spiral wire      circular rings     
Corresponding Authors: Hung D. VO   
Online First Date: 17 November 2015    Issue Date: 19 January 2016
 Cite this article:   
Hung D. VO,Hiroshi KATSUCHI,Hitoshi YAMADA, et al. A wind tunnel study on control methods for cable dry-galloping[J]. Front. Struct. Civ. Eng., 2016, 10(1): 72-80.
E-mail this article
E-mail Alert
Articles by authors
Hung D. VO
Hitoshi YAMADA
parameters values
diameter, D 75 mm
length 1800 mm
damping ratio 0.127%
mass of cable per unit length, m 3.322 kg/m
Scruton number, 2/ρD2 7.367
natural frequency 1.15 Hz
Reynolds number 0 − 7 × 104
cable surface smooth
Tab.1  Conditions of WTT
Fig.1  Wind tunnel set-up. (a) Cross-flow configuration; (b) WTT set-up sketch
Fig.2  Definition of yawed angle, inclined angle and relative angle. (a) Geometry of yawed cable; (b) geometry of inclined cable
Fig.3  Yawed angle cases
Fig.4  Vibration amplitude of cable in different yawed angles
Fig.5  The critical zone of yawed angle
α β β*
25° 45° 40°
35° 45° 35°
45° 45° 30°
55° 45° 24°
60° 45° 20°
70° 45° 14°
Tab.2  Wind relative angle cases
Fig.6  Dry-galloping of cable in different inclinations
only β cases (β = β*) β and α cases β*
40° 45° and 25° 40°
30° 45° and 45° 30°
20° 45° and 60° 20°
Tab.3  Comparison for same wind relative angle
Fig.7  Yawed angles 40° versus yawed/inclined angles 45°×25°
Fig.8  Yawed angles 30° versus yawed/inclined angles 45°×45°
Fig.9  Yawed angles 20° versus yawed/inclined angles 45°×60°
Fig.10  Sketch of control methods
Fig.11  Single spiral wire set-up
Fig.12  Effect of twined spacing on mitigation level
Fig.13  Effect of twined spacing on mitigation level
Fig.14  Effect of twined spacing on mitigation level
Fig.15  Effect of twined spacing on mitigation efficiency
Fig.16  Mitigation efficiency at yawed angle 30°
Fig.17  Double spiral wire set up
Fig.18  Effect of double spiral wire
Fig.19  Effect of double spiral wire
Fig.20  Confirmation at yawed angle 30°
Fig.21  Single and double spiral wires
Fig.22  Setup of circular rings
Fig.23  Effect of circular rings in difference wind angles
Fig.24  Effect of circular rings in difference wind angles
1 Saito  T, Matsumoto  M, Kitazawa  M. Rain-wind excitation of cables on cable-stayed Higashi-Kobe Bridge and cable vibration control. Proceedings of Cable-stayed and Suspension Bridges, 1994, 2: 507–514
2 Honda  A, Yamanaka  T, Fujiwara  T, Saito  T. Wind tunnel test on rain-induced vibration of the stay cable. In: Proceedings of International Symposium on Cable Dynamics. Liege, Belgium, 1995, 255–262 
3 Matsumoto  M, Yagi  T, Hatsuda  H, Shima  T, Tanaka  M, Naito  H. Dry galloping characteristics and its mechanism of inclined/yawed cables. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(6−7): 317–327
4 Miyata  T, Yamada  H, Hojo  T. Aerodynamic response of PE stay cables with pattern-indented surface. In: Proceedings of Inter- national Conference on Cable-Stayed and Suspension Bridges (AFPC). Deauville, France, 1994, 2: 515–522
5 Cheng  S, Larose  G L, Savage  M G, Tanaka  H, Irwin  P A. Experimental study on the wind-induced vibration of a dry inclined cable−Part I: Phenomena. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(12): 2231–2253
6 Raeesi  A, Cheng  S, Ting  D S K. Aerodynamic damping of an inclined circular cylinder in unsteady flow and its application to the prediction of dry inclined cable galloping. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 113: 12–28
7 Raeesi  A, Cheng  S, Ting  D S K. Ting. A two-degree-of-freedom aeroelastic model for the vibration of dry cylindrical body along unsteady air flow and its application to aerodynamic response of dry inclined cables. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 130: 108–124
8 Jakobsen  J B, Andersen  T L, Macdonald  J H G, Nikitas  N, Larose  G L, Savage  G, McAuliffe  B R. Wind-induced response and excitation, characteristic of an inclined cable model in the critical Reynolds number range. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 110: 100–112
9 Matsumoto  M, Shiraishi  N, Kitazawa  M, Knisely  C W, Shirato  H, Kim  Y, Tsuji  M. Aerodynamic Behavior of Inclined Circular Cylinders Cable Aerodynamics. International Colloquium on Bluff Bodies Aerodynamics and Applications, 1990, 63–72
10 Katsuchi  H, Yamada  H. Wind-tunnel Study on Dry-galloping of Indented-surface Stay Cable. In: Proceedings of the 11th Americas conference on wind engineering. San Jaun, Puerto Rico, June, 2009, 22–26
11 Kleissl  K, Georgakis  C T. Comparison of the aerodynamics of bridge cables with helical fillets and a pattern-indented surface. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104−106: 166–175
12 Flamand  O. Rain/wind-induced vibration of cables. In: Proceedigns of the International Conference on Cable-Stayed and Suspension Bridges (AFPC). Deauville, France, October, 2, 1994, 523–531
13 Gu  M, Du  X. Experimental investigation of rain–wind–<?Pub Caret?>induced vibration of cables in cable-stayed bridges and its mitigation. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(1): 79–95
14 Phelan  R, Sarkar  P, Mehta  K. Full-scale measurements to investigate rain−wind induced cable-stay vibration and its mitigation. Journal of Bridge Engineering, 2006, 11(3): 293–304
Full text