Please wait a minute...

Frontiers of Structural and Civil Engineering

Front Struc Civil Eng    2013, Vol. 7 Issue (4) : 369-378     https://doi.org/10.1007/s11709-013-0222-x
RESEARCH ARTICLE
A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling
Yongchang CAI(), Hehua ZHU, Xiaoying ZHUANG
State Key Laboratory for Disaster Reduction in Civil Engineering, Department of Geotechnical Engineering, Tongji University, ?Shanghai 20092, China
Download: PDF(638 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the framework of finite element meshes, a novel continuous/discontinuous deformation analysis (CDDA) method is proposed in this paper for modeling of crack problems. In the present CDDA, simple polynomial interpolations are defined at the deformable block elements, and a link element is employed to connect the adjacent block elements. The CDDA is particularly suitable for modeling the fracture propagation because the switch from continuous deformation analysis to discontinuous deformation analysis is natural and convenient without additional procedures. The SIFs (stress intensity factors) for various types of cracks, such as kinked cracks or curved cracks, can be easily computed in the CDDA by using the virtual crack extension technique (VCET). Both the formulation and implementation of the VCET in CDDA are simple and straightforward. Numerical examples indicate that the present CDDA can obtain high accuracy in SIF results with simple polynomial interpolations and insensitive to mesh sizes, and can automatically simulate the crack propagation without degrading accuracy.

Keywords fracture      crack      propagation      deformable block      continuous/discontinuous deformation analysis (CDDA)     
Corresponding Author(s): CAI Yongchang,Email:yc_cai@163.net   
Issue Date: 05 December 2013
 Cite this article:   
Yongchang CAI,Hehua ZHU,Xiaoying ZHUANG. A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling[J]. Front Struc Civil Eng, 2013, 7(4): 369-378.
 URL:  
http://journal.hep.com.cn/fsce/EN/10.1007/s11709-013-0222-x
http://journal.hep.com.cn/fsce/EN/Y2013/V7/I4/369
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yongchang CAI
Hehua ZHU
Xiaoying ZHUANG
Fig.1  Discrete model of an arbitrary analysis domain
Fig.2  Divide the block element along the crack growth direction
Fig.3  Nodal adjustment around the crack tip
Fig.4  Central-cracked plate
a/W402 nodes1262 nodesanalytical
KIerrorKIerror
0.22.3811-2.26%2.4174-0.77%2.4362
0.43.6308-2.65%3.7042-0.68%3.7297
0.65.38400.34%5.40550.74%5.3658
Tab.1  SIFs for the central-cracked plate
Fig.5  A three-point bending specimen
a/W0.30.40.5
KIerrorKIerrorKIerror
reference2.484-3.236-4.348-
present2.469-0.60%3.2580.68%4.3800.74%
Tab.2  SIFs for the three-point bend specimen
Fig.6  Curved crack in an infinite plate
Fig.7  2083 discrete nodes
presentanalyticalerror
KI2.0622.0152.33%
KII1.1121.1120.00%
Tab.3  SIFs for the curved crack
Fig.8  Branched crack in an infinite plate
presentanalyticalerror
FIA1.0521.0401.15%
FIB0.4860.495-1.82%
FIIB0.5000.503-0.60%
Tab.4  SIFs for branched crack in an infinite plate
Fig.9  3688 discrete nodes
Fig.10  PMMA beam with circle holes
Fig.11  One stage of the crack growth
Fig.12  Comparison of crack growth path between CDA solution and experiment results
1 Atluri S N. Methods of Computer Modeling in Engineering and the Sciences. Tech Science Press, 2005
2 Tong P, Pian T H H, Lasry S J. A hybrid-element approach to crack problems in plane elasticity. International Journal for Numerical Methods in Engineering , 1973, 7(3): 297-308
doi: 10.1002/nme.1620070307
3 Atluri S N, Kobayashi A S, Nakagaki M. An assumed displacement hybrid finite element model for linear fracture mechanics. International Journal of Fracture , 1975, 11(2): 257-271
doi: 10.1007/BF00038893
4 Xu Y, Saigal S. An element free Galerkin formulation for stable crack growth in an elastic solid. Computer Methods in Applied Mechanics and Engineering , 1998, 154(3-4): 331-343
doi: 10.1016/S0045-7825(97)00133-3
5 Belytschko T, Fleming M. Smoothing, enrichment and contact in the element-free Galerkin method. Computers & Structures , 1999, 71(2): 173-195
doi: 10.1016/S0045-7949(98)00205-3
6 Ching H K, Batra R C. Determination of crack tip fields in linear elastostatics by the Meshless Local Petrov-Galerkin (MLPG) method. Computer Modeling in Engineering & Sciences , 2001, 2(2): 273-290
7 Gu Y T, Wang W, Zhang L C, Feng X Q. An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields. Engineering Fracture Mechanics , 2011, 78(1): 175-190
doi: 10.1016/j.engfracmech.2010.10.014
8 Ma G W, An X M, Zhang H H, Li L X. Modeling complex crack problems using the numerical manifold method. International Journal of Fracture , 2009, 156(1): 21-35
doi: 10.1007/s10704-009-9342-7
9 Wu Z J, Wong L N Y. Frictional crack initiation and propagation analysis using the numerical manifold method. Computers and Geotechnics , 2012, 39: 38-53
doi: 10.1016/j.compgeo.2011.08.011
10 Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering , 1999, 46(1): 131-150
doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
11 Sukumar N, Chopp D L, Moes N, Belytschko T. Modeling holes and inclusions by level sets in the extended finite-element method. Computer Methods in Applied Mechanics and Engineering , 2001, 190(46-47): 6183-6200
doi: 10.1016/S0045-7825(01)00215-8
12 Sukumar N, Chopp D L, Béchet E, Mo?s N. Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method. International Journal for Numerical Methods in Engineering , 2008, 76(5): 727-748
doi: 10.1002/nme.2344
13 Fleming M, Chu Y A, Moran B, Belytschko T. Enriched element-free Galerkin methods for crack tip fields. International Journal for Numerical Methods in Engineering , 1997, 40(8): 1483-1504
doi: 10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6
14 Gosz M, Dolbow J, Moran B. Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks. International Journal of Solids and Structures , 1998, 35(15): 1763-1783
doi: 10.1016/S0020-7683(97)00132-7
15 Hellen T K. On the method of virtual crack extensions. International Journal for Numerical Methods in Engineering , 1975, 9(1): 187-207
doi: 10.1002/nme.1620090114
16 Rybicki E F, Kanninen M F. A finite element calculation of stress intensity factors by a modified crack closure integral. Engineering Fracture Mechanics , 1977, 9(4): 931-938
doi: 10.1016/0013-7944(77)90013-3
17 Raju I S. Calculation of strain-energy release rates with high-order and singular finite-elements. Engineering Fracture Mechanics , 1987, 28(3): 251-274
doi: 10.1016/0013-7944(87)90220-7
18 Xie D, Waas A M, Shahwan K W, Schroeder J A, Boeman R G. Computation of Energy Release Rates for Kinking Cracks based on Virtual Crack Closure Technique. CMES: Computer Modeling in Engineering & Sciences , 2004, 6(6): 515-524
19 Zhu B F. The Finite Element Method Theory and Application. Beijing: China Water Conservancy and Hydropower Press, 1998
20 Irwin G R. One set of fast crack propagation in high strength steel and aluminum alloys. Sagamore Resrach Conference Proceedings , 1956, 2: 289-305
21 Anderson T L. Fracture Mechanics: Foundamentals and Application. 2nd ed. Boca Raton: CRC , 1995
22 John E S. Wide range stress intensity factor expressions for ASTM E399 standard fracture toughness specimens. International Journal of Fracture , 1976, 12: 475-476
23 Gdoutos E. Fracture Mechanics. Boston: Kluver Academics Publisher , 1979
24 Budyn E R L. Mutiple Crack Growth by the Extended Finite Element Method. Northwestern University , 2004
25 Chen Y, Hasebe N. New integration scheme for the branch crack problem. Engineering Fracture Mechanics , 1995, 52(5): 791-801
doi: 10.1016/0013-7944(95)00052-W
26 Bittencourt T N, Wawrzynek P A, Ingraffea A R, Sousa J L. Quasiautomatic simulation of crack propagation for 2d lefm problems. Engineering Fracture Mechanics , 1996, 55(2): 321-334
doi: 10.1016/0013-7944(95)00247-2
27 Ingraffea A R, Grigoriu M. Probabilistic fracture mechanics: A validation of predictive capability, Report 90-8. Department of Structural Engineering, Cornell University , 1990.
Related articles from Frontiers Journals
[1] Zhitao LV, Caichu XIA, Yuesong WANG, Ziliang LIN. Frost heave and freezing processes of saturated rock with an open crack under different freezing conditions[J]. Front. Struct. Civ. Eng., 2020, 14(4): 947-960.
[2] Luthfi Muhammad MAULUDIN, Chahmi OUCIF, Timon RABCZUK. The effects of mismatch fracture properties in encapsulation-based self-healing concrete using cohesive-zone model[J]. Front. Struct. Civ. Eng., 2020, 14(3): 792-801.
[3] Mohammad SALAVATI, Arvin MOJAHEDIN, Ali Hossein Nezhad SHIRAZI. Mechanical responses of pristine and defective hexagonal boron-nitride nanosheets: A molecular dynamics investigation[J]. Front. Struct. Civ. Eng., 2020, 14(3): 623-631.
[4] Luthfi Muhammad MAULUDIN, Chahmi OUCIF. Computational modeling of fracture in concrete: A review[J]. Front. Struct. Civ. Eng., 2020, 14(3): 586-598.
[5] Jaroon RUNGAMORNRAT, Bounsana CHANSAVANG, Weeraporn PHONGTINNABOOT, Chung Nguyen VAN. Investigation of Generalized SIFs of cracks in 3D piezoelectric media under various crack-face conditions[J]. Front. Struct. Civ. Eng., 2020, 14(2): 280-298.
[6] Weihua FANG, Jiangfei WU, Tiantang YU, Thanh-Tung NGUYEN, Tinh Quoc BUI. Simulation of cohesive crack growth by a variable-node XFEM[J]. Front. Struct. Civ. Eng., 2020, 14(1): 215-228.
[7] Aydin SHISHEGARAN, Mohammad Reza GHASEMI, Hesam VARAEE. Performance of a novel bent-up bars system not interacting with concrete[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1301-1315.
[8] Shaochun WANG, Xi JIANG, Yun BAI. The influence of hand hole on the ultimate strength and crack pattern of shield tunnel segment joints by scaled model test[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1200-1213.
[9] Yijie HUANG, Xujia HE, Qing WANG, Jianzhuang XIAO. Deformation field and crack analyses of concrete using digital image correlation method[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1183-1199.
[10] Xudong SHAO, Lu DENG, Junhui CAO. Innovative steel-UHPC composite bridge girders for long-span bridges[J]. Front. Struct. Civ. Eng., 2019, 13(4): 981-989.
[11] Yundong ZHOU, Fei ZHANG, Jingquan Wang, Yufeng GAO, Guangyu DAI. Seismic stability of earth slopes with tension crack[J]. Front. Struct. Civ. Eng., 2019, 13(4): 950-964.
[12] Kunamineni VIJAY, Meena MURMU. Effect of calcium lactate on compressive strength and self-healing of cracks in microbial concrete[J]. Front. Struct. Civ. Eng., 2019, 13(3): 515-525.
[13] Ali Hossein Nezhad SHIRAZI. Molecular dynamics investigation of mechanical properties of single-layer phagraphene[J]. Front. Struct. Civ. Eng., 2019, 13(2): 495-503.
[14] Hsien-Yang YEH, Bin YANG. A concise review about fracture assessments of brittle solids with V-notches[J]. Front. Struct. Civ. Eng., 2019, 13(2): 478-485.
[15] G. D. HUYNH, X. ZHUANG, H. NGUYEN-XUAN. Implementation aspects of a phase-field approach for brittle fracture[J]. Front. Struct. Civ. Eng., 2019, 13(2): 417-428.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed