Please wait a minute...

Frontiers of Structural and Civil Engineering

Front. Struct. Civ. Eng.    2010, Vol. 4 Issue (2) : 208-222     https://doi.org/10.1007/s11709-010-0025-2
Research articles |
Strain localization analyses of idealized sands in biaxial tests by distinct element method
Mingjing JIANG,Hehua ZHU,Xiumei LI,
Department of Geotechnical Engineering and Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China;
Download: PDF(1317 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This paper presents a numerical investigation on the strain localization of an idealized sand in biaxial compression tests using the distinct element method (DEM). In addition to the dilatancy and material frictional angle, the principal stress field, and distributions of void ratio, particle velocity, and the averaged pure rotation rate (APR) in the DEM specimen are examined to illustrate the link between microscopic and macroscopic variables in the case of strain localization. The study shows that strain localization of the granular material in the tests proceeds with localizations of void ratio, strain and APR, and distortions of stress field and force chains. In addition, both thickness and inclination of the shear band change with the increasing of axial strain, with the former valued around 10–14 times of mean grain diameter and the later overall described by the Mohr-Coulomb theory.
Keywords idealized sand      strain localization      numerical analyses      distinct element method (DEM)      
Issue Date: 05 June 2010
 Cite this article:   
Mingjing JIANG,Xiumei LI,Hehua ZHU. Strain localization analyses of idealized sands in biaxial tests by distinct element method[J]. Front. Struct. Civ. Eng., 2010, 4(2): 208-222.
 URL:  
http://journal.hep.com.cn/fsce/EN/10.1007/s11709-010-0025-2
http://journal.hep.com.cn/fsce/EN/Y2010/V4/I2/208
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mingjing JIANG
Xiumei LI
Hehua ZHU
Jiang Mingjing, Shen Zhujiang. State-of-artsreview on strain localisation (shear band) of soils. In: Proceedings of Third Chinese Youth Conference on Geomechanics andGeo-Engineering. Nanjing: Hehai University Publication, 1998, 134―149 (in Chinese)
Labuz J, Drescher A. Bifurcationsand Instabilities in Geomechanics. Netherlands: Swets & Zeitlinger, 2003
Yin J H, Li X S, Yeung A T, Desai C S. In: The International Workshop on Constitutive Modelling Development,Implementation, Evaluation, and Application. Hong Kong, 2007
Rudnicki J W, Rice J R. Conditionsfor localization of deformation in pressure-sensitive dilatant materials. Journal of the Mechanics and Physics of Solids, 1975, 23: 371―394

doi: 10.1016/0022-5096(75)90001-0
Vardoulakis I. Shear band inclination and shear modulus of sand in biaxialtests. International Journal for Numericaland Analytical Methods in Geomechanics, 1980, 4: 103―119

doi: 10.1002/nag.1610040202
Papamichos E, Vardoulakis I. Shearband formation in sand according to non-coaxial plasticity model. Géotechnique, 1995, 45: 649―661

doi: 10.1680/geot.1995.45.4.649
Vardoulakis I, Sulem J. BifurcationAnalysis in Geomechanics. London: Blackie Academic and Professional, 1995
Hicher P Y, Wahyudi H, Tessied D. Micro-structural analysisof strain localization in clay. Computersand Geotechnics, 1994, 16: 205―222

doi: 10.1016/0266-352X(94)90002-7
Jiang M J, Shen Z J. Microscopicanalysis of shear band in structured clay. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 102―108
Jiang M J, Hongo T, Fukuda M. Pre-failure behaviour of deep-situatedOsaka clay. China Ocean Engineering, 1998, 12(4): 453―465
Jiang M J, Peng L C, Zhu H H, Lin Y X, Huang L J. Macro- and micro propertiesof two natural marine clays in China. ChinaOcean Engineering, 2009, 23(2): 329―344
Higo Y, Oka F, Jiang M J, Fujita Y. Effectsof transport of pore water and material heterogeneity on strain localizationof fluid-saturated gradient-dependent viscoplastic geomaterial. International Journal for Numerical and AnalyticalMethods in Geomechanics, 2005, 29: 495―523

doi: 10.1002/nag.423
Thomas T. Plastic Flow and Fracture in Solids. Academic Press.1961
Rice J R, Rudnicki J W. A note on some features of theory of localization of deformation. International Journal of Solids and Structures, 1980, 16: 597―605

doi: 10.1016/0020-7683(80)90019-0
Vardoulakis I. Equilibrium bifurcation of granular earth bodies. In: Advances in Analysis of Geotechnical Instabilities. Canada: Universityof Waterloo Press, 1978, 65―119
Vardoulakis I. Bifurcation analysis of the triaxial test on sand samples. Acta Mechanica, 1979, 32: 35―54

doi: 10.1007/BF01176132
Vardoulakis I. Constitutive properties of dry sand observable in thetriaxial test. Acta Mechanica, 1981, 38: 219―239

doi: 10.1007/BF01176466
Vardoulakis I. Rigid granular plasticity model and bifurcation in thetriaxial test. Acta Mechanica, 1983, 49: 57―79

doi: 10.1007/BF01181755
Muhlhaus H B, Vardoulakis I. Thethickness of shear bands in granular materials. Geotechnique, 1987, 37: 271―283

doi: 10.1680/geot.1987.37.3.271
Vardoulakis I. Shear banding and liquefaction in granular materialson the basis of Cosserat continuum theory. Archive of Applied Mechanics, 1989, 59(2): 106―113
Bazant Z P. Softening instability: Part I- Localisation into a planarband. Journal of Applied Mechanics, ASME, 1988, 55: 517―522
Arthur J R F, Dunstan T. Rupturelayers in granular media. In: ProceedingsUTAM Conference on Deformation and Failure of Granular Materials. Delft, Balkema, Rotterdam, 1982, 453―459
Drescher A, Vardoulakis I. Geometricsoftening in triaxial tests on granular material. Geotechnique, 1982, 32(4): 291―303

doi: 10.1680/geot.1982.32.4.291
Lade P V. Localization effects in triaxial tests on sand. In: Proceedings UTAM Conference on Deformationand Failure of Granular Materials. Delft, Balkema, Rotterdam, 1982, 461―471
Hettler A, Vardoulakis I. Behaviourof dry sand tested in a large triaxial apparatus. Geotechnique, 1984, 34(2): 183―198

doi: 10.1680/geot.1984.34.2.183
Han C. Localisation of deformation in sand. Dissertation for the Doctoral Degree. University of Minnesota, 1991
Han C, Drescher A. Shearbands in biaxial tests on dry coarse sand. Soils and Foundations, 1993, 33(1): 118―132
Otani J, Mukunoki T, Obara Y. Characterization of Failureand Density Distribution in Soils Using X-Ray CT Scanner, China-JapanJoint Symposium on Resent Development of Theory & Practice inGeotechnology. Shanghai, 1997, 45―50
Nemat-Nasser S, Okada N. Radiographicand microscopic observation of shear bands in granular materials. Geotechnique, 2001, 51(9): 753―765
Harris W W, Viggiani G., Mooney M A, Finno R J. Use of stereo-photogrammetry to analyze the developmentof shear bands in sand. Geotechnical TestingJournal (ASTM), 1995, 18(4): 405―420

doi: 10.1520/GTJ11016J
White D J, Take W A, Bolton M D. Soil deformation measurement using particleimage velocimetry (PIV) and photogrammetry. Geotechnique, 2003, 53(7): 619―631
Bazant Z P, Kim S S. Plastic fracturingtheory for concrete. Mechanical Engineering,ASCE, 1979, 105: 467―478
Frantziskonis G., Desai C S. Constitutive model with strain softening. International Journal of Solids and Structures, 1987, 23(6): 733―750

doi: 10.1016/0020-7683(87)90076-X
Oritz M, Leroy Y, Needleman A. A finite element method for localisedfailure analysis. Computer Methods in AppliedMechanics and Engineering, 1987, 61: 189―214

doi: 10.1016/0045-7825(87)90004-1
Pietruszczak S, Niu X. On the descriptionof localised deformation. InternationalJournal for Numerical and Analytical Methods in Geomechanics, 1993, 17: 791―805

doi: 10.1002/nag.1610171104
Hoeg K. Finite element analysis of strain-softening clay. Journal of the Soil Mechanics and Foundations,ASCE, 1972, 98(SMI): 43―58
Lo K Y, Lee C F. Stress analysisand slope stability in strain-softening materials. Geotechnique, 1973, 23(1): 1―11

doi: 10.1680/geot.1973.23.1.1
Yatomi C, Yashima A, Izuka A, Samo I. General theory of shear bands formation by a non-coaxialcam-clay model. Soils and Foundations, 1989, 29(3): 41―53
Yatomi C, Yashima A, Izuka A, Samo I. Shear bands formation numerically simulated by a non-coaxialcam-clay model. Soils and Foundations, 1989, 29(4): 1―3
Shuttle D A, Smith I M. Localizationin the presence of excess pore water pressure. Computers and Geotechnics, 1990, 8: 87―99

doi: 10.1016/0266-352X(90)90031-P
Pijaudier-Cabot G., Bazant A P. Nonlocal damage theory. Journal of EngineeringMechanics, ASCE, 1987,113: 1512―1533

doi: 10.1061/(ASCE)0733-9399(1987)113:10(1512)
Bazant A P, Pijaudier-Cabot G.. Non-local continuum damage, localisation instability and convergence. Journal of Applied Mechanics, 1988, 55: 287―293

doi: 10.1115/1.3173674
Bazant A P, Lin F B. Non-localyield limit degradation. InternationalJournal for Numerical Methods in Engineering, 1988, 26: 1805―1823

doi: 10.1002/nme.1620260809
de Borst R, Muhlhous H B. Gradient dependent plasticity formulation and algorithmic aspects. International Journal for Numerical Methods inEngineering, 1992, 35: 521―539

doi: 10.1002/nme.1620350307
de Borst R. Simulation of strain localization: a reappraisal of theCosserat continuum. Engineering Computations, 1991, 8: 317―332

doi: 10.1108/eb023842
de Borst R. A generalization of J2-flow theory for polar continua. Computer Methods in Applied Mechanics and Engineering, 1993, 103: 347―362

doi: 10.1016/0045-7825(93)90127-J
Steinmann P. Theory and numerics of ductile micropolar elastoplasticdamage. International Journal for NumericalMethods in Engineering, 1995, 38: 583―606

doi: 10.1002/nme.1620380406
Tejchman J, Bauer E. Effect of cyclicshearing on shear localisation in granular bodies. Granular Matter, 2004, 5: 201―212

doi: 10.1007/s10035-003-0135-9
Tejchman J. Influence of a characteristic length on shear zone formationin hypoplasticity with different enhancements. Computers and Geotechnics, 2004, 31(8): 595―611

doi: 10.1016/j.compgeo.2004.10.001
Tejchman J, Niemunis A. FE-studieson shear localization in an anisotropic micro-polar hypoplastic granularmaterial. Granular Matter, 2006, 8: 205―220

doi: 10.1007/s10035-006-0009-z
Cundall P A, Strack O D L. Discrete numerical model for granular assemblies. Géotechnique, 1979, 29: 47―65

doi: 10.1680/geot.1979.29.1.47
Ting J M, Corkum B T, Kauffman C R, Greco C. Discrete numerical model for soil mechanics. Journal of Geotechnical and Geoenvironmental Engineering,ASCE, 1989, 115(3): 379―398
Rothenburg L, Bathurst R J. Micromechanical features of granular assemblies with planar ellipticalparticles. Geotechnique, 1992, 42(1): 79―95

doi: 10.1680/geot.1992.42.1.79
Bardet J P. Observations on the effects of particle rotations onthe failure of idealized granular materials. Mechanics of Materials, 1994, 18: 159―182

doi: 10.1016/0167-6636(94)00006-9
Kuhn M R. Structured deformation in granular materials. Mechanics of Materials, 1999, 31(6): 407―429

doi: 10.1016/S0167-6636(99)00010-1
Ng T T. Fabric evolution of ellipsoidal arrays with differentparticle shapes. Journal of EngineeringMechanics, 2001, 127(10): 994―999

doi: 10.1061/(ASCE)0733-9399(2001)127:10(994)
Thornton C. Numerical simulation of deviatoric shear deformationof granular media. Geotechnique, 2000, 50(1): 43―53

doi: 10.1680/geot.2000.50.1.43
Jiang M J, Harris D, Yu H S. Kinematic models for non-coaxialgranular materials, Part II: Evaluation. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(7): 663―689

doi: 10.1002/nag.431
Kuhn M R, Mitchell J K. New perspectives on soil creep. Journalof Geotechnical and Geoenvironmental Engineering, 1993, 119(3): 507―524
Jiang M J, Leroueil S, Konrad J M. Insight into shear strengthfunctions of unsaturated granulates by DEM analyses. Computer & Geotech, 2004, 31(6): 473―489

doi: 10.1016/j.compgeo.2004.07.001
Jiang M J, Lerouil S, Konrad J M. Yielding of microstructuredgeomaterial by DEM analysis. Journal ofEngineering Mechanics, ASCE, 2005, 131(11): 1209―1213

doi: 10.1061/(ASCE)0733-9399(2005)131:11(1209)
Jiang M J, Yu H S. Leroueil S. A simple and efficient approach to capturingbonding effect in naturally-microstructured sands by discrete elementmethod. International Journal for NumericalMethods in Engineering, 2007, 69: 1158―1193

doi: 10.1002/nme.1804
Utili S, Nova R. DEM analysisof bonded granular geomaterials. InternationalJournal for Numerical and Analytical Methods in Geomechanics, 2008, 32(17): 1997―2031

doi: 10.1002/nag.728
Delenne J Y, El Youssoufi M S, Cherblanc F, Beneet J C. Mechanical behaviour and failure of cohesive granularmaterials. International Journal for Numericaland Analytical Methods in Geomechanics, 2004, 28: 1577―1594

doi: 10.1002/nag.401
Wang Y H, Leung S C. A particulatescale investigation of cemented sand behaviour. Canadian Geotechnical Journal, 2008, 45: 29―44

doi: 10.1139/T07-070
Jiang M J, Yu H S, Harris D. Bond rolling resistance and its effecton yielding of bonded granulates by DEM analyses. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(7): 723―761

doi: 10.1002/nag.498
Wang Y H, Leung S C. Characterizationof cemented sand by experimental and numerical investigations. Journal of Geotechnical and Geoenvironmental Engineering,ASCE, 2008, 134(7): 992―1004

doi: 10.1061/(ASCE)1090-0241(2008)134:7(992)
Jiang M J, Yu H S, Harris D. Discrete element modelling of deep penetrationin granular soils. Journal for Numericaland Analytical Methods in Geomechanics, 2006, 30(4): 335―361

doi: 10.1002/nag.473
Jiang M J, Zhu H H, Harris D. Classical and nonclassical kinematicfields of two-dimensional penetration tests on granular ground bydiscrete element method analyses. GranularMatter, 2008, 10: 439―455

doi: 10.1007/s10035-008-0107-1
Jiang M J, Harris D, Zhu H H. Future continuum models forgranular materials in penetration analyses. Granular Matter, 2007, 9: 97―108

doi: 10.1007/s10035-006-0026-y
Jiang M J, Yu H S. An interpretationof the internal length in Chang’s couple-stress continuum forbonded granulates. Granular Matter, 2007, 9: 431―437

doi: 10.1007/s10035-007-0063-1
Bardet J P, Proubet J. Anumerical investigation of the structure of persistent shear bandsin granular media. Geotechnique, 1991, 41: 599―613

doi: 10.1680/geot.1991.41.4.599
Iwashita K, Oda M. Rolling resistanceat contacts in simulation of shear band development by DEM. Journal of Engineering Mechanics, ASCE, 1998, 124: 285―292

doi: 10.1061/(ASCE)0733-9399(1998)124:3(285)
Iwashita K, Oda M. Micro-deformationmechanism of shear banding process based on modified distinct element. Powder Technology, 2000, 109: 192―205

doi: 10.1016/S0032-5910(99)00236-3
Oda M, Iwashita K. Studyon couple stress and shear band development in granular media basedon numerical analyses. International Journalof Engineering Science, 2000, 38: 1713―40

doi: 10.1016/S0020-7225(99)00132-9
Jiang M J, Yu H S, Harris D. Kinematic variables bridging discreteand continuum granular mechanics. MechanicsResearch Communications, 2006, 33: 651―666

doi: 10.1016/j.mechrescom.2005.06.013
Jiang M J, Harris D, Yu H S. Kinematic models for non-coaxialgranular materials, Part I: theories. InternationalJournal for Numerical and Analytical Methods in Geomechanics, 2005, 29(7): 643―661

doi: 10.1002/nag.430
Itasca Consulting GroupInc. Particle Flow Code in 2 Dimensions, version 3.1. Minnesota,USA, 2004
Jiang M J, Konrad J M, Leroueil S. An efficient technique forgenerating homogeneous specimens for DEM studies. Computers and Geotechnics, 2003, 30(7): 579―597

doi: 10.1016/S0266-352X(03)00064-8
Kuhn M R. A flexible boundary for three-dimensional DEM particleassemblies. Engineering Computations, 1995, 12: 175―183

doi: 10.1108/02644409510799541
Schofield A N, Wroth C P. CriticalState Soil Mechanics. London: McGraw–Hill, 1968
Ting J M, Meechum L R, Rowell J D. Effect of particle shapeon the strength and deformation mechanism of ellipse-shaped granularassemblages. Computer Engineering, 1995, 12: 99―108

doi: 10.1108/02644409510799497
Sawada S, Pradhan T B S. Analysis of anisotropy and particle shape by distinct element method. In: Siriwardane, Zaman, ed(s). Computer Methods and Advancements in Geomechanics. Rotterdam, The Nethelands: Balkema; 1994, 665―670
Thomas P A, Bray J D. Capturingnonspherical shape of granular media with disk clusters, ASCE, 1999, 125: 169―178

doi: 10.1061/(ASCE)1090-0241(1999)125:3(169)
Ullidtz P. Modelling of granular materials using the discrete elementmethod. In: Proceedings of 8th InternationalConference on Asphalt Pavements, Seattle: University of Washington, 1997, 757―769
Jiang M J, Yu H S, Harris D. A novel discrete model for granular materialincorporating rolling resistance. Computersand Geotechnics, 2005, 32(5): 340―357

doi: 10.1016/j.compgeo.2005.05.001
Jiang M J, Leroueil S, Zhu H H, Yu H S, Konrad J M. Two-dimensional discrete element theory for rough particles. International Journal of Geomechanics, ASCE, 2009, 9(1): 20―33

doi: 10.1061/(ASCE)1532-3641(2009)9:1(20)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed