Bismuth telluride nanostructures: preparation, thermoelectric properties and topological insulating effect

Eric ASHALLEY, Haiyuan CHEN, Xin TONG, Handong LI, Zhiming M. WANG

PDF(8338 KB)
PDF(8338 KB)
Front. Mater. Sci. ›› 2015, Vol. 9 ›› Issue (2) : 103-125. DOI: 10.1007/s11706-015-0285-9
REVIEW ARTICLE
REVIEW ARTICLE

Bismuth telluride nanostructures: preparation, thermoelectric properties and topological insulating effect

Author information +
History +

Abstract

Bismuth telluride is known to wield unique properties for a wide range of device applications. However, as devices migrate to the nanometer scale, significant amount of studies are being conducted to keep up with the rapidly growing nanotechnological field. Bi2Te3 possesses distinctive properties at the nanometer level from its bulk material. Therefore, varying synthesis and characterization techniques are being employed for the realization of various Bi2Te3 nanostructures in the past years. A considerable number of these works have aimed at improving the thermoelectric (TE) figure-of-merit (ZT) of the Bi2Te3 nanostructures and drawing from their topological insulating properties. This paper reviews the various Bi2Te3 and Bi2Te3-based nanostructures realized via theoretical and experimental procedures. The study probes the preparation techniques, TE properties and the topological insulating effects of 0D, 1D, 2D and Bi2Te3 nanocomposites. With several applications as a topological insulator (TI), the topological insulating effect of the Bi2Te3 is reviewed in detail with the time reversal symmetry (TRS) and surface state spins which characterize TIs. Schematics and preparation methods for the various nanostructural dimensions are accordingly categorized.

Keywords

Bi2Te3 nanostructure / thermoelectric property / topological insulator (TI)

Cite this article

Download citation ▾
Eric ASHALLEY, Haiyuan CHEN, Xin TONG, Handong LI, Zhiming M. WANG. Bismuth telluride nanostructures: preparation, thermoelectric properties and topological insulating effect. Front. Mater. Sci., 2015, 9(2): 103‒125 https://doi.org/10.1007/s11706-015-0285-9

References

[1]
Bonificio W D, Clarke D R. Bacterial recovery and recycling of tellurium from tellurium-containing compounds by Pseudoalteromonas sp. EPR3. Journal of Applied Microbiology, 2014, 117(5): 1293–1304
[2]
Bark H, Kim J S, Kim H, . Effect of multiwalled carbon nanotubes on the thermoelectric properties of a bismuth telluride matrix. Current Applied Physics, 2013, 13(Supplement 2): S111–S114
[3]
Touzelbaev M N, Zhou P, Venkatasubramanian R, . Thermal characterization of Bi2Te3/Sb2Te3 superlattices. Journal of Applied Physics, 2001, 90(2): 763–767
[4]
Zhang H T, Luo X G, Wang C H, . Characterization of nanocrystalline bismuth telluride (Bi2Te3) synthesized by a hydrothermal method. Journal of Crystal Growth, 2004, 265(3-4): 558–562
[5]
Toprak M, Zhang Y, Muhammed M. Chemical alloying and characterization of nanocrystalline bismuth telluride. Materials Letters, 2003, 57(24-25): 3976–3982
[6]
Cao Y, Waugh J A, Zhang X W, . Mapping the orbital wavefunction of the surface states in three-dimensional topological insulators. Nature Physics, 2013, 9(8): 499–504
[7]
McCulley M J, Neudeck G W, Liedl G L. Electrical properties of rf sputtered bismuth telluride thin films. Journal of Vacuum Science & Technology, 1973, 10(2): 391
[8]
Noro H, Sato K, Kagechika H. The thermoelectric properties and crystallography of Bi–Sb–Te–Se thin films grown by ion beam sputtering. Journal of Applied Physics, 1993, 73(3): 1252–1260
[9]
Pattamatta A, Madnia C K. Modeling heat transfer in Bi2Te3–Sb2Te3 nanostructures. International Journal of Heat and Mass Transfer, 2009, 52(3-4): 860–869
[10]
Singh M P, Bhandari C M. Thermoelectric properties of bismuth telluride quantum wires. Solid State Communications, 2003, 127(9-10): 649–654
[11]
Zeng G, Bahk J H, Bowers J E, . Thermoelectric power generator module of 16×16 Bi2Te3 and 0.6% ErAs:(InGaAs)1-x(InAlAs)x segmented elements. Applied Physics Letters, 2009, 95(8): 083503
[12]
Eremeev S V, Landolt G, Menshchikova T V, . Atom-specific spin mapping and buried topological states in a homologous series of topological insulators. Nature Communications, 2012, 3: 635
[13]
Jin C Q, Wang X C, Liu Q Q, . New quantum matters: Build up versus high pressure tuning. Science China Physics, Mechanics & Astronomy, 2013, 56(12): 2337–2350
[14]
Chiritescu C, Mortensen C, Cahill D G, . Lower limit to the lattice thermal conductivity of nanostructured Bi2Te3-based materials. Journal of Applied Physics, 2009, 106(7): 073503
[15]
Chen Z G, Han G, Yang L, . Nanostructured thermoelectric materials: Current research and future challenge. Progress in Natural Science, 2012, 22(6): 535–549
[16]
Wang Y, Liebig C, Xu X, . Acoustic phonon scattering in Bi2Te3/Sb2Te3 superlattices. Applied Physics Letters, 2010, 97(8): 083103
[17]
Chatterjee K, Mitra M, Kargupta<?Pub Caret?>K, . Synthesis, characterization and enhanced thermoelectric performance of structurally ordered cable-like novel polyaniline-bismuth telluride nanocomposite. Nanotechnology, 2013, 24(21): 215703 (10 pages)
[18]
Scheele M, Oeschler N, Meier K, . Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Advanced Functional Materials, 2009, 19(21): 3476–3483
[19]
Tu N H, Tanabe Y, Huynh K K, . Van der Waals epitaxial growth of topological insulator Bi2-xSbxTe3-ySey ultrathin nanoplate on electrically insulating fluorophlogopite mica. Applied Physics Letters, 2014, 105: 063104
[20]
Wang N, Cai Y, Zhang R Q. Growth of nanowires. Materials Science and Engineering R: Reports, 2008, 60(1-6): 1–51
[21]
Liu Z, Wei X, Wang J, . Local structures around 3D metal dopants in topological insulator Bi2Se3 studied by EXAFS measurements. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(9): 094107
[22]
Hines M, Lenhardt J, Lu M, . Cooling effect of nanoscale Bi2Te3/Sb2Te3 multilayered thermoelectric thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2012, 30(4): 041509
[23]
Le P H, Liao C, Luo C W, . Thermoelectric properties of nanostructured bismuth–telluride thin films grown using pulsed laser deposition. Journal of Alloys and Compounds, 2014, 615: 546–552
[24]
Sun T, Samani M K, Khosravian N, . Enhanced thermoelectric properties of the n-type Bi2Te2.7Se0.3 thin films through the introduction of Pt nano inclusions by pulsed laser deposition. Nano Energy, 2014, 8: 223–230
[25]
Lee G E, Kim I H, Lim Y S, . Preparation and thermoelectric properties of Iodine-doped Bi2Te3–Bi2Se3 solid solutions. Journal of the Korean Physical Society, 2014, 65(5): 696–701
[26]
Chen Y R, Hwang W S, Hsieh H L, . Thermal and microstructure simulation of thermoelectric material Bi2Te3 grown by zone melting technique. Journal of Crystal Growth, 2014, 402: 273–284
[27]
Mehta R J, Zhang Y, Karthik C, . A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nature Materials, 2012, 11(3): 233–240
[28]
Zhou J, Wang Y, Sharp J, . Optimal thermoelectric figure of merit in Bi2Te3/Sb2Te3 quantum dot nanocomposites. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(11): 115320
[29]
de Juan F, Ilan R, Bardarson J H. Robust transport signatures of topological superconductivity in topological insulator nanowires. Physical Review Letters, 2014, 113(10): 107003
[30]
Hamdou B, Beckstedt A, Kimling J, . The influence of a Te-depleted surface on the thermoelectric transport properties of Bi2Te3 nanowires. Nanotechnology, 2014, 25(36): 365401 (7 pages)
[31]
Tittes K, Bund A, Plieth W, . Electrochemical deposition of Bi2Te3 for thermoelectric microdevices. Journal of Solid State Electrochemistry, 2003, 7(10): 714–723
[32]
Pokropivny V V, Skorokhod V V. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterials science. Materials Science and Engineering C, 2007, 27(5-8): 990–993
[33]
Chen X, Liu L, Dong Y, . Preparation of nano-sized Bi2Te3 thermoelectric material powders by cryogenic grinding. Progress in Natural Science, 2012, 22(3): 201–206
[34]
Novaconi S, Vlazan P, Malaescu I, . Doped Bi2Te3 nano-structured semiconductors obtained by ultrasonically assisted hydrothermal method. Central European Journal of Chemistry, 2013, 11(10): 1599–1605
[35]
Kaspar K, Pelz U, Hillebrecht H. Polyol synthesis of nano-Bi2Te3. Journal of Electronic Materials, 2014, 43(4): 1200–1206
[36]
Kim D H, Kim C, Heo S H, . Influence of powder morphology on thermoelectric anisotropy of spark-plasma-sintered Bi–Te-based thermoelectric materials. Acta Materialia, 2011, 59(1): 405–411
[37]
Teo J C Y, Fu L, Kane C L. Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1-xSbx. Physical Review B: Condensed Matter and Materials Physics, 2008, 78(4): 045426
[38]
Chen L, Zhao Q, Ruan X. Facile synthesis of ultra-small Bi2Te3 nanoparticles, nanorods and nanoplates and their morphology-dependent Raman spectroscopy. Materials Letters, 2012, 82: 112–115
[39]
Zhang Y, Wang H, Kräemer S, . Surfactant-free synthesis of Bi2Te3–Te micro-nano heterostructure with enhanced thermoelectric figure of merit. ACS Nano, 2011, 5(4): 3158–3165
[40]
Takahashi M, Kojima M, Sato S, . Electric and thermoelectric properties of electrodeposited bismuth telluride (Bi2Te3) films. Journal of Applied Physics, 2004, 96(10): 5582
[41]
Zhang Y, Wang X L, Yeoh W K, . Electrical and thermoelectric properties of single-wall carbon nanotube doped Bi2Te3. Applied Physics Letters, 2012, 101(3): 031909
[42]
Fan S, Zhao J, Yan Q, . Influence of nanoinclusions on thermoelectric properties of n-type Bi2Te3 nanocomposites. Journal of Electronic Materials, 2011, 40(5): 1018–1023
[43]
Ao W Q, Wang L, Li J Q, . Synthesis and characterization of polythioplhene/Bi2Te3 nanocomposite thermoelectric material. Journal of Electronic Materials, 2011, 40(9): 2027–2032
[44]
Pelz U, Kaspar K, Schmidt S, . An aqueous-chemistry approach to nano-bismuth telluride and nano-antimony telluride as thermoelectric materials. Journal of Electronic Materials, 2012, 41(6): 1851–1857
[45]
Chowdhury I, Prasher R, Lofgreen K, . On-chip cooling by superlattice-based thin-film thermoelectrics. Nature Nanotechnology, 2009, 4(4): 235–238
[46]
Li F, Huang X, Sun Z, . Enhanced thermoelectric properties of n-type Bi2Te3-based nanocomposite fabricated by spark plasma sintering. Journal of Alloys and Compounds, 2011, 509(14): 4769-4773
[47]
Deng Y, Zhou X, Wei G, . Solvothermal preparation and characterization of nanocrystalline Bi2Te3 powder with different morphology. Journal of Physics and Chemistry of Solids, 2002, 63(11): 2119–2121
[48]
Chen Y L, Analytis J G, Chu J H, . Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science, 2009, 325(5937): 178–181
[49]
Zhou B, Zhao Y, Pu L, . Microwave-assisted synthesis of nanocrystalline Bi2Te3. Materials Chemistry and Physics, 2006, 96(2-3): 192–196
[50]
Jiang Y, Zhu Y J, Chen L D. Microwave-assisted preparation of Bi2Te3 hollow nanospheres. Chemistry Letters, 2007, 36(3): 382–383
[51]
Kim C, Kim D H, Han Y S, . Fabrication of bismuth telluride nanoparticles using a chemical synthetic process and their thermoelectric evaluations. Powder Technology, 2011, 214(3): 463–468
[52]
Mi J L, Lock N, Sun T, . Biomolecule-assisted hydrothermal synthesis and self-assembly of Bi2Te3 nanostring-cluster hierarchical structure. ACS Nano, 2010, 4(5): 2523–2530
[53]
Xiao F, Yoo B, Lee K H, . Synthesis of Bi2Te3 nanotubes by galvanic displacement. Journal of the American Chemical Society, 2007, 129(33): 10068–10069
[54]
Kong D, Randel J C, Peng H, . Topological insulator nanowires and nanoribbons. Nano Letters, 2010, 10(1): 329–333
[55]
Lee J, Kim J, Moon W, . Enhanced Seebeck coefficients of thermoelectric Bi2Te3 nanowires as a result of an optimized annealing process. The Journal of Physical Chemistry C, 2012, 116(36): 19512–19516
[56]
Chen C L, Chen Y Y, Lin S J, . Fabrication and characterization of electrodeposited bismuth telluride films and nanowires. The Journal of Physical Chemistry C, 2010, 114(8): 3385–3389
[57]
Picht O, Müller S, Alber I, . Tuning the geometrical and crystallographic characteristics of Bi2Te3 nanowires by electrodeposition in ion-track membranes. The Journal of Physical Chemistry C, 2012, 116(9): 5367–5375
[58]
Cao Y Q, Zhu T J, Zhao X B. Thermoelectric Bi2Te3 nanotubes synthesized by low-temperature aqueous chemical method. Journal of Alloys and Compounds, 2008, 449(1-2): 109–112
[59]
Wang Z, Wang F, Chen H, . Synthesis and characterization of Bi2Te3 nanotubes by a hydrothermal method. Journal of Alloys and Compounds, 2010, 492(1-2): L50–L53
[60]
Kim S H, Park B K. Solvothermal synthesis of Bi2Te3 nanotubes by the interdiffusion of Bi and Te metals. Materials Letters, 2010, 64(8): 938–941
[61]
Wei Q, Su Y, Yang C J, . The synthesis of Bi2Te3 nanobelts by vapor-liquid-solid method and their electric transport properties. Journal of Materials Science, 2011, 46(7): 2267–2272
[62]
Yao Q, Zhu Y, Chen L, . Microwave-assisted synthesis and characterization of Bi2Te3 nanosheets and nanotubes. Journal of Alloys and Compounds, 2009, 481(1-2): 91–95
[63]
Xiao F, Yoo B, Lee K H, . Synthesis of Bi2Te3 nanotubes by galvanic displacement. Journal of the American Chemical Society, 2007, 129(33): 10068–10069
[64]
Zhang G, Yu Q, Yao Z, . Large scale highly crystalline Bi2Te3 nanotubes through solution phase nanoscale Kirkendall effect fabrication. Chemical Communications, 2009, 17(17): 2317–2319
[65]
Li X L, Cai K F, Yu D H, . Electrodeposition and characterization of thermoelectric Bi2Te2Se/Te multilayer nanowire arrays. Superlattices and Microstructures, 2011, 50(5): 557–562
[66]
Deng Y, Xiang Y, Song Y. Template-free synthesis and transport properties of Bi2Te3 ordered nanowire arrays via a physical vapor process. Crystal Growth & Design, 2009, 9(7): 3079–3082
[67]
Cha J J, Kong D, Hong S S, . Weak antilocalization in Bi2(SexTe1-x)3 nanoribbons and nanoplates. Nano Letters, 2012, 12(2): 1107–1111
[68]
Du Y, Cai K F, Chen S, . Facile preparation and thermoelectric properties of Bi2Te3 based alloy nanosheet/PEDOT:PSS composite films. Applied Materials & Interfaces, 2014, 6(8): 5735–5743
[69]
Son J S, Choi M K, Han M K, . n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Letters, 2012, 12(2): 640–647
[70]
Li H D, Gao L, Li H, . Growth and band alignment of Bi2Te3 topological insulator on H-terminated Si(111) van der Waals surface. Applied Physics Letters, 2013, 102(7): 074106
[71]
Punita S, Kedar S. Morphological evolution in single-crystalline Bi2Te3 nanoparticles, nanosheet and nanotubes with different synthesis temperatures. Bulletin of Materials Science, 2013, 36(5): 765–770
[72]
Wang Z Y, Guo X, Li H D, . Supperlattices of Bi2Se3/In2Se3: Growth characteristics and structural properties. Applied Physics Letters, 2011, 99(2): 023112
[73]
König J D, Winkler M, Buller S, . Bi2Te3–Sb2Te3 superlattices grown by nanoalloying. Journal of Electronic Materials, 2011, 40(5): 1266–1270
[74]
Pettes M T, Maassen J, Jo I, . Effects of surface band bending and scattering on thermoelectric transport in suspended bismuth telluride nanoplates. Nano Letters, 2013, 13(11): 5316–5322
[75]
Li J, Lou W K, Zhang D, . Single- and few-electron states in topological-insulator quantum dots. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(11): 115303
[76]
Gurevich V L, Thellung A. Conductance and thermoelectric effect in a two-dimensional collisionless electron gas. Physical Review B: Condensed Matter and Materials Physics, 2002, 65(15): 153313
[77]
Wang X R, Wang Y, Sun Z Z. Antiresonance scattering at defect levels in the quantum conductance of a one-dimensional system. Physical Review B: Condensed Matter and Materials Physics, 2002, 65(19): 193402
[78]
Nurnus J, Bottner H, Lambrecht A. In: Proceeding of the 22nd International Conference on Thermoelectrics, 2003, 655
[79]
Zhao L, Deng H, Korzhovska I, . Singular robust room-temperature spin response from topological Dirac fermions. Nature Materials, 2014, 13(6): 580–585
[80]
Hicks L D, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B: Condensed Matter and Materials Physics, 1993, 47(24): 16631–16634
[81]
Hicks L D, Harman T C, Sun X, . Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B: Condensed Matter and Materials Physics, 1996, 53(16): R10493–R10496
[82]
Guo H, Lin Y, Shen S Q. Dimensional evolution between one- and two-dimensional topological phases. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 085413
[83]
Weng M Q, Wu M W. High-field charge transport on the surface of Bi2Se3. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(12): 125306
[84]
Termentzidis K, Pokropyvnyy O, Woda M, . Large thermal conductivity decrease in point defective Bi2Te3 bulk materials and superlattices. Journal of Applied Physics, 2013, 113(1): 013506
[85]
Takashiri M, Miyazaki K, Tanaka S, . Effect of grain size on thermoelectric properties of n-type nanocrystalline bismuth–telluride based thin films. Journal of Applied Physics, 2008, 104(8): 084302
[86]
Jiang Y, Sun Y Y, Chen M, . Fermi-level tuning of epitaxial Sb2Te3 thin films on graphene by regulating intrinsic defects and substrate transfer doping. Physical Review Letters, 2012, 108(6): 066809
[87]
Li H, Cao J, Zheng W, . Controlled synthesis of topological insulator nanoplate arrays on mica. Journal of the American Chemical Society, 2012, 134(14): 6132–6135
[88]
Kwon S D, Ju B, Yoon S J, . Fabrication of bismuth telluride-based alloy thin film thermoelectric devices grown by metal organic chemical vapor deposition. Journal of Electronic Materials, 2009, 38(7): 920–924
[89]
Kong D, Dang W, Cha J J, . Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Letters, 2010, 10(6): 2245–2250
[90]
Budnik A V, Rogacheva E I, Pinegin V I, . Effect of initial bulk material composition on thermoelectric properties of Bi2Te3 thin films. Journal of Electronic Materials, 2013, 42(7): 1324–1329
[91]
Ridhi R, Tripathi S K. Preparation and characterization of bismuth telluride (Bi2Te3)-polyaniline (PANI) nanocomposite. AIP Conference Proceedings, 2013, 1536: 131–132
[92]
Kim H J, Han M K, Yo C H, . Effects of Bi2Se3 nanoparticle inclusions on the microstructure and thermoelectric properties of Bi2Te3-based nanocomposites. Journal of Electronic Materials, 2012, 41(12): 3411–3416
[93]
Gooth J, Hamdou B, Dorn A, . Resolving the Dirac cone on the surface of Bi2Te3 topological insulator nano wires by field-effect measurements. Applied Physics Letters, 2014, 104(24): 243115
[94]
Biswas K G, Sands T D, Cola B A, . Thermal conductivity of bismuth telluride nanowire arry-epoxy composite. Applied Physics Letters, 2009, 94(22): 223116
[95]
Deng Y, Cui C W, Zhang N L, . Bi2Te3–Te nanocomposite formed by epitaxial growth of Bi2Te3 sheets on Te rod. Journal of Solid State Chemistry, 2006, 179(5): 1575–1580
[96]
Kim K T, Kim D W, Ha G H. Direct synthesis of Te/Bi2Te3 nanocomposite powders by a polyol process. Research on Chemical Intermediates, 2010, 36(6-7): 835–841
[97]
Kim K T, Koo H Y, Lee G G, . Synthesis of alumina nanoparticle-embedded-bismuth telluride matrix thermoelectric composite powders. Materials Letters, 2012, 82: 141–144
[98]
Zhou L, Zhang X, Zhao X, . Synthesis and characterization of carbon nanotube supported Bi2Te3 nanacrystals. Journal of Alloys and Compounds, 2010, 502(2): 329–332
[99]
Vigil-Galan O, Cruz-Gandarilla F, Fandiño J, . Physical properties of Bi2Te3 and Sb2Te3 films deposited by close space vapor transport. Semiconductor Science and Technology, 2009, 24(2): 025025
[100]
Zheng Z H, Fan P, Chen T B, . Optimization in fabricating bismuth telluride thin films by ion beam sputtering deposition. Thin Solid Films, 2012, 520(16): 5245–5248
[101]
Boulanger C. Thermoelectric material electroplating: a historical review. Journal of Electronic Materials, 2010, 39(9): 1818–1827
[102]
Goncalves L M, Couto C, Alpuim P, . Optimization of thermoelectric properties on Bi2Te3 thin films deposited by thermal co-evaporation. Thin Solid Films, 2010, 518(10): 2816–2821
[103]
Olbrich P, Golub L E, Herrmann T, . Room-temperature high-frequency transport of Dirac fermions in epitaxially grown Sb2Te3- and Bi2Te3-based topological insulators. Physical Review Letters, 2014, 113(9): 096601
[104]
Peng H, Lai K, Kong D, . Aharonov–Bohm interference in topological insulator nanoribbons. Nature Materials, 2010, 9(3): 225–229
[105]
Sau J D, Lutchyn R M, Tewari S, . Generic new platform for topological quantum computation using semiconductor heterostructures. Physical Review Letters, 2010, 104(4): 040502
[106]
Das A, Ronen Y, Most Y, . Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nature Physics, 2012, 8(12): 887–895
[107]
Mourik V, Zuo K, Frolov S M, . Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science, 2012, 336(6084): 1003–1007
[108]
Zhang F, Kane C L, Mele E J. Time-reversal-invariant topological superconductivity and Majorana Kramers pairs. Physical Review Letters, 2013, 111(5): 056402
[109]
Hasan M Z, Kane C L. Topological insulators. Reviews of Modern Physics, 2010, 82(4): 3045–3067
[110]
Alexandradinata A, Fang C, Gilbert M J, . Spin-orbit-free topological insulators without time-reversal symmetry. Physical Review Letters, 2014, 113(11): 116403
[111]
Halász G B, Balents L. Time-reversal invariant realization of the Weyl semimetal phase. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(3): 035103
[112]
Ojanen T. Helical Fermi arcs and surface states in time-reversal invariant Weyl semimetals. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(24): 245112
[113]
Okugawa R, Murakami S. Dispersion of Fermi arcs in Weyl semimetals and their evolutions to Dirac cones. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(23): 235315
[114]
Balents L. Weyl electrons kiss. Physics, 2011, 4: 36 (2 pages)
[115]
Arrachea L, Aligia A A. Unveiling a crystalline topological insulator in a Weyl semimetal with time-reversal symmetry. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(12): 125101
[116]
Zhang T, Cheng P, Chen X, . Experimental demonstration of topological surface states protected by time-reversal symmetry. Physical Review Letters, 2009, 103(26): 266803
[117]
König M, Wiedmann S, Brüne C, . Quantum spin hall insulator state in HgTe quantum wells. Science, 2007, 318(5851): 766–770
[118]
Xia Y, Qian D, Hsieh D, . Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 2009, 5(6): 398–402
[119]
Hsieh D, Xia Y, Qian D, . A tunable topological insulator in the spin helical Dirac transport regime. Nature, 2009, 460(7259): 1101–1105
[120]
Yan B, Zhang S C. Topological materials. Reports on Progress in Physics, 2012, 75: 096501 (23 pages)
[121]
Fu L, Kane C L, Mele E J. Topological insulators in three dimensions. Physical Review Letters, 2007, 98(10): 106803
[122]
Roy R. Topological phases and the quantum spin Hall effect in three dimensions. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(19): 195322
[123]
Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314(5806): 1757–1761
[124]
Liu C X, Qi X L, Zhang H J, . Model Hamiltonian for topological insulators. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(4): 045122
[125]
Luo W, Qi X L. Massive Dirac surface states in topological insulator/magnetic insulator heterostructures. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(8): 085431
[126]
Tang J, Chang L T, Kou X, . Electrical detection of spin-polarized surface states conduction in (Bi0.53Sb0.47)2Te3 topological insulator. Nano Letters, 2014, 14(9): 5423–5429
[127]
Qi X L, Hughes T L, Zhang S C. Topological field theory of time-reversal invariant insulators. Physical Review B: Condensed Matter and Materials Physics, 2008, 78(19): 195424
[135]
Hamdou B, Gooth J, Dorn A, . Surface state dominated transport in topological insulator Bi2Te3 nanowires. Applied Physics Letters, 2013, 103(19): 193107
[129]
Wang C, Potter A C, Senthil T. Classification of interacting electronic topological insulators in three dimensions. Science, 2014, 343: 6171
[130]
Wang J, Li H, Chang C, . Anomalous anisotropic magnetoresistance in topological insulator films. Nano Research, 2012, 5(10): 739–746
[131]
Cheng L, Liu H J, Zhang J, . Effects of van der Waals interactions and quasiparticle corrections on the electronic and transport properties of Bi2Te3. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 085118
[132]
Li L L, Xu W. Thermoelectric properties of two-dimensional topological insulators doped with nonmagnetic impurities. Journal of Applied Physics, 2014, 116(1): 013706
[133]
Lee J, Koo J, Chi C, . All-fiberized, passively Q-switched 1.06 µm laser using a bulk-structured Bi2Te3 topological insulator. Journal of Optics, 2014, 16(8): 085203
[134]
Xiu F, He L, Wang Y, . Manipulating surface states in topological insulator nanoribbons. Nature Nanotechnology, 2011, 6(4): 216–221
[128]
Yu C, Zhang G, Peng L M, . Thermal transport along Bi2Te3 topological insulator nanowires. Applied Physics Letters, 2014, 105(2): 023903
[136]
Checkelsky J G, Hor Y S, Liu M H, . Quantum interference in macroscopic crystals of nonmetallic Bi2Se3. Physical Review Letters, 2009, 103(24): 246601
[137]
Steinberg H, Gardner D R, Lee Y S, . Surface state transport and ambipolar electric field effect in Bi2Se3 nanodevices. Nano Letters, 2010, 10(12): 5032–5036
[138]
Matsubayashi K, Terai T, Zhou J S, . Superconductivity in the topological insulator Bi2Te3 under hydrostatic pressure. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(12): 125126
[139]
Li H D, Wang Z M, eds. Bismuth-Containing Compounds. New York: Springer, 2013, 1-370
[140]
Ballet P, Thomas C, Baudry X, . MBE growth of strained HgTe/CdTe topological insulator structures. Journal of Electronic Materials, 2014, 43(8): 2955–2962

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11104010, 61474014 and 51272038) and the National Basic Research Program (973) of China (2013CB933301).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(8338 KB)

Accesses

Citations

Detail

Sections
Recommended

/