Bismuth telluride nanostructures: preparation, thermoelectric properties and topological insulating effect
Eric ASHALLEY, Haiyuan CHEN, Xin TONG, Handong LI, Zhiming M. WANG
Bismuth telluride nanostructures: preparation, thermoelectric properties and topological insulating effect
Bismuth telluride is known to wield unique properties for a wide range of device applications. However, as devices migrate to the nanometer scale, significant amount of studies are being conducted to keep up with the rapidly growing nanotechnological field. Bi2Te3 possesses distinctive properties at the nanometer level from its bulk material. Therefore, varying synthesis and characterization techniques are being employed for the realization of various Bi2Te3 nanostructures in the past years. A considerable number of these works have aimed at improving the thermoelectric (TE) figure-of-merit (ZT) of the Bi2Te3 nanostructures and drawing from their topological insulating properties. This paper reviews the various Bi2Te3 and Bi2Te3-based nanostructures realized via theoretical and experimental procedures. The study probes the preparation techniques, TE properties and the topological insulating effects of 0D, 1D, 2D and Bi2Te3 nanocomposites. With several applications as a topological insulator (TI), the topological insulating effect of the Bi2Te3 is reviewed in detail with the time reversal symmetry (TRS) and surface state spins which characterize TIs. Schematics and preparation methods for the various nanostructural dimensions are accordingly categorized.
Bi2Te3 nanostructure / thermoelectric property / topological insulator (TI)
[1] |
Bonificio W D, Clarke D R. Bacterial recovery and recycling of tellurium from tellurium-containing compounds by Pseudoalteromonas sp. EPR3. Journal of Applied Microbiology, 2014, 117(5): 1293–1304
|
[2] |
Bark H, Kim J S, Kim H,
|
[3] |
Touzelbaev M N, Zhou P, Venkatasubramanian R,
|
[4] |
Zhang H T, Luo X G, Wang C H,
|
[5] |
Toprak M, Zhang Y, Muhammed M. Chemical alloying and characterization of nanocrystalline bismuth telluride. Materials Letters, 2003, 57(24-25): 3976–3982
|
[6] |
Cao Y, Waugh J A, Zhang X W,
|
[7] |
McCulley M J, Neudeck G W, Liedl G L. Electrical properties of rf sputtered bismuth telluride thin films. Journal of Vacuum Science & Technology, 1973, 10(2): 391
|
[8] |
Noro H, Sato K, Kagechika H. The thermoelectric properties and crystallography of Bi–Sb–Te–Se thin films grown by ion beam sputtering. Journal of Applied Physics, 1993, 73(3): 1252–1260
|
[9] |
Pattamatta A, Madnia C K. Modeling heat transfer in Bi2Te3–Sb2Te3 nanostructures. International Journal of Heat and Mass Transfer, 2009, 52(3-4): 860–869
|
[10] |
Singh M P, Bhandari C M. Thermoelectric properties of bismuth telluride quantum wires. Solid State Communications, 2003, 127(9-10): 649–654
|
[11] |
Zeng G, Bahk J H, Bowers J E,
|
[12] |
Eremeev S V, Landolt G, Menshchikova T V,
|
[13] |
Jin C Q, Wang X C, Liu Q Q,
|
[14] |
Chiritescu C, Mortensen C, Cahill D G,
|
[15] |
Chen Z G, Han G, Yang L,
|
[16] |
Wang Y, Liebig C, Xu X,
|
[17] |
Chatterjee K, Mitra M, Kargupta<?Pub Caret?>K,
|
[18] |
Scheele M, Oeschler N, Meier K,
|
[19] |
Tu N H, Tanabe Y, Huynh K K,
|
[20] |
Wang N, Cai Y, Zhang R Q. Growth of nanowires. Materials Science and Engineering R: Reports, 2008, 60(1-6): 1–51
|
[21] |
Liu Z, Wei X, Wang J,
|
[22] |
Hines M, Lenhardt J, Lu M,
|
[23] |
Le P H, Liao C, Luo C W,
|
[24] |
Sun T, Samani M K, Khosravian N,
|
[25] |
Lee G E, Kim I H, Lim Y S,
|
[26] |
Chen Y R, Hwang W S, Hsieh H L,
|
[27] |
Mehta R J, Zhang Y, Karthik C,
|
[28] |
Zhou J, Wang Y, Sharp J,
|
[29] |
de Juan F, Ilan R, Bardarson J H. Robust transport signatures of topological superconductivity in topological insulator nanowires. Physical Review Letters, 2014, 113(10): 107003
|
[30] |
Hamdou B, Beckstedt A, Kimling J,
|
[31] |
Tittes K, Bund A, Plieth W,
|
[32] |
Pokropivny V V, Skorokhod V V. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterials science. Materials Science and Engineering C, 2007, 27(5-8): 990–993
|
[33] |
Chen X, Liu L, Dong Y,
|
[34] |
Novaconi S, Vlazan P, Malaescu I,
|
[35] |
Kaspar K, Pelz U, Hillebrecht H. Polyol synthesis of nano-Bi2Te3. Journal of Electronic Materials, 2014, 43(4): 1200–1206
|
[36] |
Kim D H, Kim C, Heo S H,
|
[37] |
Teo J C Y, Fu L, Kane C L. Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1-xSbx. Physical Review B: Condensed Matter and Materials Physics, 2008, 78(4): 045426
|
[38] |
Chen L, Zhao Q, Ruan X. Facile synthesis of ultra-small Bi2Te3 nanoparticles, nanorods and nanoplates and their morphology-dependent Raman spectroscopy. Materials Letters, 2012, 82: 112–115
|
[39] |
Zhang Y, Wang H, Kräemer S,
|
[40] |
Takahashi M, Kojima M, Sato S,
|
[41] |
Zhang Y, Wang X L, Yeoh W K,
|
[42] |
Fan S, Zhao J, Yan Q,
|
[43] |
Ao W Q, Wang L, Li J Q,
|
[44] |
Pelz U, Kaspar K, Schmidt S,
|
[45] |
Chowdhury I, Prasher R, Lofgreen K,
|
[46] |
Li F, Huang X, Sun Z,
|
[47] |
Deng Y, Zhou X, Wei G,
|
[48] |
Chen Y L, Analytis J G, Chu J H,
|
[49] |
Zhou B, Zhao Y, Pu L,
|
[50] |
Jiang Y, Zhu Y J, Chen L D. Microwave-assisted preparation of Bi2Te3 hollow nanospheres. Chemistry Letters, 2007, 36(3): 382–383
|
[51] |
Kim C, Kim D H, Han Y S,
|
[52] |
Mi J L, Lock N, Sun T,
|
[53] |
Xiao F, Yoo B, Lee K H,
|
[54] |
Kong D, Randel J C, Peng H,
|
[55] |
Lee J, Kim J, Moon W,
|
[56] |
Chen C L, Chen Y Y, Lin S J,
|
[57] |
Picht O, Müller S, Alber I,
|
[58] |
Cao Y Q, Zhu T J, Zhao X B. Thermoelectric Bi2Te3 nanotubes synthesized by low-temperature aqueous chemical method. Journal of Alloys and Compounds, 2008, 449(1-2): 109–112
|
[59] |
Wang Z, Wang F, Chen H,
|
[60] |
Kim S H, Park B K. Solvothermal synthesis of Bi2Te3 nanotubes by the interdiffusion of Bi and Te metals. Materials Letters, 2010, 64(8): 938–941
|
[61] |
Wei Q, Su Y, Yang C J,
|
[62] |
Yao Q, Zhu Y, Chen L,
|
[63] |
Xiao F, Yoo B, Lee K H,
|
[64] |
Zhang G, Yu Q, Yao Z,
|
[65] |
Li X L, Cai K F, Yu D H,
|
[66] |
Deng Y, Xiang Y, Song Y. Template-free synthesis and transport properties of Bi2Te3 ordered nanowire arrays via a physical vapor process. Crystal Growth & Design, 2009, 9(7): 3079–3082
|
[67] |
Cha J J, Kong D, Hong S S,
|
[68] |
Du Y, Cai K F, Chen S,
|
[69] |
Son J S, Choi M K, Han M K,
|
[70] |
Li H D, Gao L, Li H,
|
[71] |
Punita S, Kedar S. Morphological evolution in single-crystalline Bi2Te3 nanoparticles, nanosheet and nanotubes with different synthesis temperatures. Bulletin of Materials Science, 2013, 36(5): 765–770
|
[72] |
Wang Z Y, Guo X, Li H D,
|
[73] |
König J D, Winkler M, Buller S,
|
[74] |
Pettes M T, Maassen J, Jo I,
|
[75] |
Li J, Lou W K, Zhang D,
|
[76] |
Gurevich V L, Thellung A. Conductance and thermoelectric effect in a two-dimensional collisionless electron gas. Physical Review B: Condensed Matter and Materials Physics, 2002, 65(15): 153313
|
[77] |
Wang X R, Wang Y, Sun Z Z. Antiresonance scattering at defect levels in the quantum conductance of a one-dimensional system. Physical Review B: Condensed Matter and Materials Physics, 2002, 65(19): 193402
|
[78] |
Nurnus J, Bottner H, Lambrecht A. In: Proceeding of the 22nd International Conference on Thermoelectrics, 2003, 655
|
[79] |
Zhao L, Deng H, Korzhovska I,
|
[80] |
Hicks L D, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B: Condensed Matter and Materials Physics, 1993, 47(24): 16631–16634
|
[81] |
Hicks L D, Harman T C, Sun X,
|
[82] |
Guo H, Lin Y, Shen S Q. Dimensional evolution between one- and two-dimensional topological phases. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 085413
|
[83] |
Weng M Q, Wu M W. High-field charge transport on the surface of Bi2Se3. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(12): 125306
|
[84] |
Termentzidis K, Pokropyvnyy O, Woda M,
|
[85] |
Takashiri M, Miyazaki K, Tanaka S,
|
[86] |
Jiang Y, Sun Y Y, Chen M,
|
[87] |
Li H, Cao J, Zheng W,
|
[88] |
Kwon S D, Ju B, Yoon S J,
|
[89] |
Kong D, Dang W, Cha J J,
|
[90] |
Budnik A V, Rogacheva E I, Pinegin V I,
|
[91] |
Ridhi R, Tripathi S K. Preparation and characterization of bismuth telluride (Bi2Te3)-polyaniline (PANI) nanocomposite. AIP Conference Proceedings, 2013, 1536: 131–132
|
[92] |
Kim H J, Han M K, Yo C H,
|
[93] |
Gooth J, Hamdou B, Dorn A,
|
[94] |
Biswas K G, Sands T D, Cola B A,
|
[95] |
Deng Y, Cui C W, Zhang N L,
|
[96] |
Kim K T, Kim D W, Ha G H. Direct synthesis of Te/Bi2Te3 nanocomposite powders by a polyol process. Research on Chemical Intermediates, 2010, 36(6-7): 835–841
|
[97] |
Kim K T, Koo H Y, Lee G G,
|
[98] |
Zhou L, Zhang X, Zhao X,
|
[99] |
Vigil-Galan O, Cruz-Gandarilla F, Fandiño J,
|
[100] |
Zheng Z H, Fan P, Chen T B,
|
[101] |
Boulanger C. Thermoelectric material electroplating: a historical review. Journal of Electronic Materials, 2010, 39(9): 1818–1827
|
[102] |
Goncalves L M, Couto C, Alpuim P,
|
[103] |
Olbrich P, Golub L E, Herrmann T,
|
[104] |
Peng H, Lai K, Kong D,
|
[105] |
Sau J D, Lutchyn R M, Tewari S,
|
[106] |
Das A, Ronen Y, Most Y,
|
[107] |
Mourik V, Zuo K, Frolov S M,
|
[108] |
Zhang F, Kane C L, Mele E J. Time-reversal-invariant topological superconductivity and Majorana Kramers pairs. Physical Review Letters, 2013, 111(5): 056402
|
[109] |
Hasan M Z, Kane C L. Topological insulators. Reviews of Modern Physics, 2010, 82(4): 3045–3067
|
[110] |
Alexandradinata A, Fang C, Gilbert M J,
|
[111] |
Halász G B, Balents L. Time-reversal invariant realization of the Weyl semimetal phase. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(3): 035103
|
[112] |
Ojanen T. Helical Fermi arcs and surface states in time-reversal invariant Weyl semimetals. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(24): 245112
|
[113] |
Okugawa R, Murakami S. Dispersion of Fermi arcs in Weyl semimetals and their evolutions to Dirac cones. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(23): 235315
|
[114] |
Balents L. Weyl electrons kiss. Physics, 2011, 4: 36 (2 pages)
|
[115] |
Arrachea L, Aligia A A. Unveiling a crystalline topological insulator in a Weyl semimetal with time-reversal symmetry. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(12): 125101
|
[116] |
Zhang T, Cheng P, Chen X,
|
[117] |
König M, Wiedmann S, Brüne C,
|
[118] |
Xia Y, Qian D, Hsieh D,
|
[119] |
Hsieh D, Xia Y, Qian D,
|
[120] |
Yan B, Zhang S C. Topological materials. Reports on Progress in Physics, 2012, 75: 096501 (23 pages)
|
[121] |
Fu L, Kane C L, Mele E J. Topological insulators in three dimensions. Physical Review Letters, 2007, 98(10): 106803
|
[122] |
Roy R. Topological phases and the quantum spin Hall effect in three dimensions. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(19): 195322
|
[123] |
Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314(5806): 1757–1761
|
[124] |
Liu C X, Qi X L, Zhang H J,
|
[125] |
Luo W, Qi X L. Massive Dirac surface states in topological insulator/magnetic insulator heterostructures. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(8): 085431
|
[126] |
Tang J, Chang L T, Kou X,
|
[127] |
Qi X L, Hughes T L, Zhang S C. Topological field theory of time-reversal invariant insulators. Physical Review B: Condensed Matter and Materials Physics, 2008, 78(19): 195424
|
[135] |
Hamdou B, Gooth J, Dorn A,
|
[129] |
Wang C, Potter A C, Senthil T. Classification of interacting electronic topological insulators in three dimensions. Science, 2014, 343: 6171
|
[130] |
Wang J, Li H, Chang C,
|
[131] |
Cheng L, Liu H J, Zhang J,
|
[132] |
Li L L, Xu W. Thermoelectric properties of two-dimensional topological insulators doped with nonmagnetic impurities. Journal of Applied Physics, 2014, 116(1): 013706
|
[133] |
Lee J, Koo J, Chi C,
|
[134] |
Xiu F, He L, Wang Y,
|
[128] |
Yu C, Zhang G, Peng L M,
|
[136] |
Checkelsky J G, Hor Y S, Liu M H,
|
[137] |
Steinberg H, Gardner D R, Lee Y S,
|
[138] |
Matsubayashi K, Terai T, Zhou J S,
|
[139] |
Li H D, Wang Z M, eds. Bismuth-Containing Compounds. New York: Springer, 2013, 1-370
|
[140] |
Ballet P, Thomas C, Baudry X,
|
/
〈 | 〉 |