In vitro corrosion of Mg--6Zn--1Mn--4Sn--1.5Nd/0.5Y alloys
Rong-Chang ZENG , Lei WANG , Ding-Fei ZHANG , Hong-Zhi CUI , En-Hou HAN
Front. Mater. Sci. ›› 2014, Vol. 8 ›› Issue (3) : 230 -243.
In vitro corrosion of Mg--6Zn--1Mn--4Sn--1.5Nd/0.5Y alloys
The microstructure evaluation, surface morphology, chemical compositions and phase analysis of the biomedical Mg--6Zn--1Mn--4Sn--1.5Nd/0.5Y (ZMT614--1.5Nd/0.5Y) alloys were investigated by means of optical microscopy, EPMA, X-ray EDS, XRD and FTIR. The corrosion behavior was evaluated using weight-loss measurement, hydrogen evolution, electrochemical and pH measurements. The results demonstrate that the microstructure for both ZMT614--1.5Nd alloy and ZMT614--0.5Y alloy is characterized by α-Mg and intermetallic compounds, most of which are distributed along the grain boundaries. These second phases contain Mg2Zn, Mg2Zn11, Mg2Sn and single metal Mn, together with Mg12Nd phase for the ZMT614--1.5Nd alloy, and with Mg24Y5 phase for the ZMT614--0.5Y alloy. Honeycomb-like corrosion product layers form. The corrosion resistance of the ZMT614--0.5Y alloy is higher than that of the ZMT614--1.5Nd alloy, which is ascribed to the addition of the element Y into the alloy delaying the corrosion initiation in comparison to that of Nd element in the alloy.
magnesium alloy / yttrium / neodymium / corrosion / biomaterial
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
Higher Education Press and Springer-Verlag Berlin Heidelberg
/
| 〈 |
|
〉 |