Please wait a minute...

Frontiers of Materials Science

Front Mater Sci    2012, Vol. 6 Issue (1) : 69-78     DOI: 10.1007/s11706-012-0158-4
RESEARCH ARTICLE |
Electrical and non-linear optical studies on electrospun ZnO/BaO composite nanofibers
G. NIXON SAMUEL VIJAYAKUMAR1,2, M. RATHNAKUMARI2, P. SURESHKUMAR2()
1. Department of Physics, R. M. K. Engineering College, R. S. M. Nagar, Kavaraipettai 601 206, India; 2. Materials Research Centre, Department of Physics, Velammal Engineering College, Chennai 600 066, India
Download: PDF(644 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nanocapacitors and nonvolatile ferroelectric random access memories require nanoscale thin film coatings with ferroelectric properties. One dimensional ferroelectric nanofibers are used in ferroelectric memory devices owing to the fact that decrease of the dimensionality of the memory device elements will reduce the addressing and appreciably increase the storage capacity. Novel ZnO/BaO nanocomposite fibers exhibiting ferroelectric properties have been prepared in the form of non-woven mesh by electrospinning the sol derived from the sol-gel route. Thin cylindrical nanofibers of average diameter 100 nm have been obtained and their morphology is confirmed by SEM and AFM images. In the electrospinning process, the effect of the working distance on the fiber morphology was studied and it showed that working distance between 11 and 15 cm can produce fibers without beads and the decrease in working distance in this range increases the fiber diameter. Powder XRD was used to identify the phases and EDX analysis confirmed the presence of ZnO/BaO. Dielectric and non-linear optical properties have also been studied. The dielectric studies showed that ZnO/BaO composite nanofibers undergo a phase transition from ferroelectric to paraelectric at 323 K.

Keywords nanocomposite fiber      sol-gel process      dielectric property      non-linear optical property      ferroelectric property     
Corresponding Authors: SURESHKUMAR P.,Email:suresrath@ymail.com   
Issue Date: 05 March 2012
 Cite this article:   
G. NIXON SAMUEL VIJAYAKUMAR,M. RATHNAKUMARI,P. SURESHKUMAR. Electrical and non-linear optical studies on electrospun ZnO/BaO composite nanofibers[J]. Front Mater Sci, 2012, 6(1): 69-78.
 URL:  
http://journal.hep.com.cn/foms/EN/10.1007/s11706-012-0158-4
http://journal.hep.com.cn/foms/EN/Y2012/V6/I1/69
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
G. NIXON SAMUEL VIJAYAKUMAR
M. RATHNAKUMARI
P. SURESHKUMAR
Fig.1  Electrospinning set-up.
Fig.2  SEM image of fibers deposited at the working distance between 5 and 10 cm.
Fig.3  SEM image of scattered droplets deposited at the working distance beyond 16 cm.
Fig.4  SEM image of spilt solution deposited at the working distance less than 5 cm.
Fig.5  Variation of the fiber diameter with the working distance.
Electrospinning parametersOptimized values
Applied voltage18 kV
Distance between electrodes15 cm
Size of the needle opening25 G
Conductivity of the sol18.7 mS/cm
Temperature of the sol303 K
Viscosity of the sol1.23 Pa·s
Calcining temperature1123 K
Time of calcining8 h
Average diameter of fibers after calcining100 nm
Tab.1  The optimum values of electrospinning parameters
Fig.6  SEM image of PVA/zinc acetate/barium acetate composite nanofibers.
Fig.7  SEM image of ZnO/BaO composite nanofibers.
Fig.8  AFM image of PVA/zinc acetate/barium acetate composite nanofibers.
Fig.9  Powder XRD pattern of ZnO/BaO nanocomposite compared with those of ZnO and BaO.
Fig.10  Powder XRD pattern of ZnO/BaO nanocomposite compared with those of ZnO and BaO.
Fig.11  UV spectrum of ZnO/BaO nanocomposite.
Fig.12  Plot of variation of [()/(eV·m)] versus ()/eV.
Fig.13  Dielectric constant versus logarithm of frequency at different temperatures.
Fig.14  Dielectric loss versus logarithm of frequency at different temperatures.
Fig.15  Variations of dielectric constant with temperature rise.
Fig.16  Log frequency versus AC conductivity.
1 Martin L W, Chu Y H, Ramesh R. Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Materials Science and Engineering R: Reports , 2010, 68(4-6): 89-133
2 Uchino K. Ferroelectric Devices. New York: Marcel Decker, 2000
3 Singh P, Singh S, Juneja J K, . Synthesis and ferroelectric properties of La-substituted PZFNT. Physica B: Condensed Matter , 2010, 405(1): 10-14
4 Furukawa T, Takahashi Y, Nakajima T. Recent advances in ferroelectric polymer thin films for memory applications. Current Applied Physics , 2010, 10(1): e62-e67
5 Yang S M, Yoon J G, Noh T W. Nanoscale studies of defect-mediated polarization switching dynamics in ferroelectric thin film capacitors. Current Applied Physics , 2011, 11(5): 1111-1125
6 Wang Q-M, Cross L E. Tip deflection and blocking force of soft PZT-based cantilever RAINBOW actuators. Journal of the American Ceramic Society , 1999, 82(1): 103-110
7 Uchino K. Materials issues in design and performance of piezoelectric actuators: an overview. Acta Materialia , 1998, 46(11): 3745-3753
8 Gupta M K, Kumar B. Enhanced ferroelectric, dielectric and optical behavior in Li-doped ZnO nanorods. Journal of Alloys and Compounds , 2011, 509(23): L208-L212
9 Gupta M K, Sinha N, Singh B K, . Synthesis of K-doped p-type ZnO nanorods along (100) for ferroelectric and dielectric applications. Materials Letters , 2010, 64(16): 1825-1828
10 Zou C W, Shao L X, Guo L P, . Ferromagnetism and ferroelectric properties of (Mn, Li) co-doped ZnO nanorods arrays deposited by electrodeposition. Journal of Crystal Growth , 2011, 331(1): 44-48
11 Islam M R, Podder J. Optical properties of ZnO nano fiber thin films grown by spray pyrolysis of zinc acetate precursor. Crystal Research and Technology , 2009, 44(3): 286-292
12 Wang X S, Wu Z C, Webb J F, . Ferroelectric and dielectric properties of Li-doped ZnO thin films prepared by pulsed laser deposition. Applied Physics A: Materials Science & Processing , 2003, 77(3-4): 561-565
13 Shibata T, Unno K, Makino E, . Characterization of sputtered ZnO thin film as sensor and actuator for diamond AFM probe. Sensors and Actuators A: Physical , 2002, 102(1-2): 106-113
14 Comini E, Faglia G, Sberveglieri G, . Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Applied Physics Letters , 2002, 81(10): 1869-1872
15 Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science , 2001, 291(5510): 1947-1949
16 Arnold M S, Avouris P, Pan Z W, . Field-effect transistors based on single semiconducting oxide nanobelts. Journal of Physical Chemistry B , 2003, 107(3): 659-663
17 Hughes W L, Wang Z L. Nanobelts as nanocantilevers. Applied Physics Letters , 2003, 82(17): 2886-2888
18 Bai X D, Gao P X, Wang Z L, . Dual-mode mechanical resonance of individual ZnO nanobelts. Applied Physics Letters , 2003, 82(26): 4806-4808
19 Kim S-H, Lee J-S, Choi H-C, . The fabrication of thin-film bulk acoustic wave resonators employing a ZnO/Si composite diaphragm structure using porous silicon layer etching. IEEE Electron Device Letters , 1999, 20(3): 113-115
20 Zhao M H, Wang Z L, Mao S X. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Letters , 2004, 4(4): 587-590
21 Mathew S M, Umbarkar S B, Dongare M K. NOx storage behavior of BaO in different structural environment in NSR catalysts. Catalysis Communications , 2007, 8(8): 1178-1182
22 Kumar P, Singh S, Juneja J K, . Ferroelectric properties of substituted barium titanate ceramics. Physica B: Condensed Matter , 2009, 404(12-13): 1752-1756
23 Baji A, Mai Y W, Li Q, . Nanoscale investigation of ferroelectric properties in electrospun barium titanate/polyvinylidene fluoride composite fibers using piezoresponse force microscopy. Composites Science and Technology , 2011, 71(11): 1435-1440
24 Xiao S H, Jiang W F, Luo K, . Structure and ferroelectric properties of barium titanate films synthesized by sol-gel method. Materials Chemistry and Physics , 2011, 127(3): 420-425
25 Yuh J, Nino J C, Sigmund W M, . Synthesis of barium titanate (BaTiO3) nanofibers via electrospinning. Materials Letters , 2005, 59(28): 3645-3647
26 Nixon Samuel Vijayakumar G, Rathnakumari M, Sureshkumar P. Sol-gel synthesis of electrospun BaO/MnO nanocomposite fibers and their magnetic characterization. Crystal Research and Technology
doi: 10.1002/crat.201100375
27 Siddheswaran R, Sankar R, Ramesh Babu M, . Preparation and characterization of ZnO nanofibers by electrospinning. Crystal Research and Technology , 2006, 41(5): 446-449
28 Nixon Samuel Vijayakumar G, Devashankar S, Rathnakumari M, . Synthesis of electrospun ZnO/CuO nanocomposite fibers and their dielectric and non-linear optic studies. Journal of Alloys and Compounds , 2010, 507(1): 225-229
29 Ma G P, Yang D Z, Chen B L, . Preparation and characterization of composite fibers from organic-soluble chitosan and poly-vinylpyrrolidone by electrospinning. Frontiers of Materials Science in China , 2010, 4(1): 64-69
30 Chen L-J, Liao J-D, Chuang Y-J, . Polyvinylbutyral assisted synthesis and characterization of chalcopyrite quaternary semiconductor Cu(InxGa1-x)Se2 nanofibers by electrospinning route. Polymer , 2011, 52(1): 116-121
31 Liu Y, Song Y, Chen D, . Sol-gel synthesis of polycrystalline ZnO and ZnS fibers. Journal of Dispersion Science and Technology , 2006, 27(8): 1191-1195
32 Solovyov V F, Wiesmann H J, Suenaga M. A new method of HF control for synthesizing YBCO using the BaF2exsitu process. Superconductor Science and Technology , 2003, 16(11): L37-L39
33 Chawla A K, Kaur D, Chandra R. Structural and optical characterization of ZnO nanocrystalline films deposited by sputtering. Optical Materials , 2007, 29(8): 995-998
34 Barsoum M. Fundamentals of Ceramics. New York: Mc Graw-Hill, 1977, 543
35 Justin Raj C, Krishnan S, Dinakaran S, . Growth, optical, mechanical, dielectric and theoretical studies on potassium pentaborate tetrahydrate (KB5O8·4H2O) single crystal by modified Sankaranarayanan-Ramasamy method. Journal of Materials Science & Technology , 2009, 25(6): 745-748
36 Smyth C P. Dielectric Behavior and Structure. New York: Mc Graw-Hill, 1955
37 Jose M, Sridhar B, Bhagavannarayana G, . Growth, structural, optical, thermal and mechanical studies of novel semi-organic NLO active single crystal: Heptaaqua-p-nitrophenolato strontium (I) nitrophenol. Journal of Crystal Growth , 2010, 312(6): 793-799
38 Cyrac Peter A, Vimalan M, Sagayaraj P, . Thermal, optical, mechanical and electrical properties of a novel NLO active L-phenylalanine L-phenylalaninium perchlorate single crystals. Physica B: Physics of Condensed Matter , 2010, 405(1): 65-71
39 Krishnan S, Justin Raj C, Robert R, . Mechanical, theoretical and dielectric studies on ferroelectric lithium ammonium sulphate (LAS) single crystals. Solid-State Electronics , 2008, 52(8): 1157-1161
40 Chithambaram V, Jerome Das S, Arivudai Nambi R, . Effect of metallic dopants on potassium acid phthalate (KAP) single crystals. Physica B: Condensed Matter , 2010, 405(12): 2605-2609
41 Mathe V L, Patankar K K, Lotke S D, . Structural, dielectric and transport properties of Pb(Mn0.5W0.5)O3. Bulletin of Materials Science , 2002, 25(4): 347-350
42 Arora S K, Patel V, Amin B, . Dielectric behaviour of strontium tartrate single crystals. Bulletin of Materials Science , 2004, 27(2): 141-147
43 Barber P, Balasubramanian S, Anguchamy Y, . Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials , 2009, 2(4): 1697-1733
44 Mahajan R P, Patankar K K, Kothale M B, . Conductivity, dielectric behaviour and magnetoelectric effect in copper ferrite-barium titanate composites. Bulletin of Materials Science , 2000, 23(4): 273-279
45 Jonscher A K. The ‘universal’ dielectric response. Nature , 1977, 267(5613): 673-679
46 Kurtz S K, Perry T T. A powder technique for the evaluation of nonlinear optical materials. Journal of Applied Physics , 1968, 39(8): 3798-3813
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed