Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2014, Vol. 7 Issue (4) : 509-512     DOI: 10.1007/s12200-014-0400-z
RESEARCH ARTICLE |
Preparation and characterization of high uniformity zinc oxide nanosheets
Xiaoyan LI1,2,Pei LIANG2,*(),Le WANG2,Feihong YU1
1. State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
2. College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
Download: PDF(655 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reports a synthesis of zinc oxide (ZnO) nanosheets by hydrothermal method. ZnO nanosheets on Al substrate were generated by hydrothermal synthesis with zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMT) as a research system, which were controlled conditions of the reaction. The energy dispersive spectroscopy (EDS), scanning electron microscope (SEM) and transmission electron microscopy (TEM) images were achieved to determine the characterization of ZnO nanosheets. The diameter of ZnO nanofilm was from 0.5 to 1 μm, and its thickness ranged from 30 to 50 nm.

Keywords hydrothermal method      zinc oxide (ZnO)      nanosheets     
Corresponding Authors: Pei LIANG   
Online First Date: 10 April 2014    Issue Date: 12 December 2014
 Cite this article:   
Xiaoyan LI,Pei LIANG,Le WANG, et al. Preparation and characterization of high uniformity zinc oxide nanosheets[J]. Front. Optoelectron., 2014, 7(4): 509-512.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-014-0400-z
http://journal.hep.com.cn/foe/EN/Y2014/V7/I4/509
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaoyan LI
Pei LIANG
Le WANG
Feihong YU
Fig.1  SEM images of nanostructured ZnO nanosheets. (a) Magnification: 2000; (b) magnification 30000
Fig.2  EDS spectrum of synthesized ZnO nanosheets by simple hydrothermal process
Fig.3  Typical (a), (b) low-magnification and (c) high-resolution TEM images of synthesized ZnO nanosheets by simple hydrothermal process
1 Chen S Q, Zhang J, Feng X, Wang X H, Luo L Q, Shi Y L, Xue Q S, Wang C, Zhu J Z, Zhu Z Q. Nanocrystalline ZnO thin films on porous silicon/silicon substrates obtained by sol–gel technique. Applied Surface Science, 2005, 241(3–4): 384–391
doi: 10.1016/j.apsusc.2004.07.040
2 Makino T, Chia C, Tuan N, Segawa Y, Kawasaki M, Ohtomo A, Tamura K, Koinuma H. Exciton spectra of ZnO epitaxial layers on lattice-matched substrates grown with laser-molecular-beam epitaxy. Applied Physics Letters, 2000, 76(24): 3549–3551
doi: 10.1063/1.126703
3 Ramanathan K, Contreras M A, Perkins C L, Asher S, Hasoon F S, Keane J, Young D, Romero M, Metzger W, Noufi R, Ward J, Duda A. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Progress in Photovoltaics: Research and Applications, 2003, 11(4): 225–230
doi: 10.1002/pip.494
4 Yang J L, An S J, Park W I, Yi G C, Choi W. Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition. Advanced Materials, 2004, 16(18): 1661–1664
doi: 10.1002/adma.200306673
5 Wang Z. Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Applied Physics A, Materials Science & Processing, 2007, 88(1): 7–15
doi: 10.1007/s00339-007-3942-8
6 Lee C, Lee T, Lyu S, Zhang Y, Ruh H, Lee H. Field emission from well-aligned zinc oxide nanowires grown at low temperature. Applied Physics Letters, 2002, 81(19): 3648–3650
doi: 10.1063/1.1518810
7 Chen X, Nazzal A, Goorskey D, Xiao M, Peng Z A, Peng X. Polarization spectroscopy of single CdSe quantum rods. Physical Review B: Condensed Matter and Materials Physics, 2001, 64(24): 245304-1–245304-4
8 Zou J, Zhang J X, Zhang B H, Zhao P T, Xu X F, Chen J, Huang K X. Synthesis and characterization of copper sulfide nanocrystal with three-dimensional flower-shape. Journal of Materials Science, 2007, 42(22): 9181–9186
doi: 10.1007/s10853-007-1923-0
9 Willander M, Nur O, Zhao Q X, Yang L L, Lorenz M, Cao B Q, Zú?iga Pérez J, Czekalla C, Zimmermann G, Grundmann M, Bakin A, Behrends A, Al-Suleiman M, El-Shaer A, Che Mofor A, Postels B, Waag A, Boukos N, Travlos A, Kwack H S, Guinard J, Le Si Dang D. Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology, 2009, 20(33): 332001-1–332001-40
doi: 10.1088/0957-4484/20/33/332001
10 Li Y, Meng G W, Zhang L D, Phillipp F. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Applied Physics Letters, 2000, 76(15): 2011–2013
doi: 10.1063/1.126238
11 Lao C S, Liu J, Gao P, Zhang L, Davidovic D, Tummala R, Wang Z L. ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across au electrodes. Nano Letters, 2006, 6(2): 263–266
doi: 10.1021/nl052239p pmid: 16464047
12 Chen S J, Liu Y C, Shao C L, Mu R, Lu Y M, Zhang J Y, Shen D Z, Fan X W. Structural and optical properties of uniform ZnO nanosheets. Advanced Materials, 2005, 17(5): 586–590
doi: 10.1002/adma.200401263
13 Hu J Q, Bando Y, Zhan J H, Li Y B, Sekiguchi T. Two-dimensional micrometer-sized single-crystalline ZnO thin nanosheets. Applied Physics Letters, 2003, 83(21): 4414–4416
doi: 10.1063/1.1629788
14 Tan S T, Chen B J, Sun X W, Fan W J, Kwok H S, Zhang X H, Chua S J. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. Journal of Applied Physics, 2005, 98(1): 013505-1–013505-5
15 Carcia P, McLean R, Reilly M, Nunes G. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Applied Physics Letters, 2003, 82(7): 1117–1119
doi: 10.1063/1.1553997
16 Jin B, Im S, Lee S. Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films, 2000, 366(1–2): 107–110
doi: 10.1016/S0040-6090(00)00746-X
17 Baruah S, Dutta J. Hydrothermal growth of ZnO nanostructures. Science and Technology of Advanced Materials, 2009, 10(1): 013001-1–013001-18
doi: 10.1088/1468-6996/10/1/013001
18 Wang Y X, Fan X Y, Sun J. Hydrothermal synthesis of phosphate-mediated ZnO nanosheets. Materials Letters, 2009, 63(3–4): 350–352
doi: 10.1016/j.matlet.2008.10.036
19 Chin K C, Poh C K, Chong G L, Lin J, Sow C H, Wee A T S. Large area, rapid growth of two-dimensional ZnO nanosheets and their field emission performances. Applied Physics A, Materials Science & Processing, 2008, 90(4): 623–627
doi: 10.1007/s00339-007-4379-9
20 Yang J H, Zheng J H, Zhai H J, Yang L L, Lang J H, Gao M. Growth mechanism and optical properties of ZnO nanosheets by the hydrothermal method on Si substrates. Journal of Alloys and Compounds, 2009, 481(1–2): 628–631
doi: 10.1016/j.jallcom.2009.03.108
21 Umar A, Hahn Y. ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties. Nanotechnology, 2006, 17(9): 2174–2180
doi: 10.1088/0957-4484/17/9/016
Related articles from Frontiers Journals
[1] Yajuan ZHENG, Xiangbin ZENG, Xiaohu SUN, Diqiu HUANG. Influence of substrate temperature on in situ-textured ZnO thin films grown by MOCVD[J]. Front Optoelec, 2013, 6(3): 270-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed