Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec    2013, Vol. 6 Issue (4) : 440-447     DOI: 10.1007/s12200-013-0350-x
RESEARCH ARTICLE |
Selective growth and characterization of ZnO nanorods assembled a hexagonal pattern on H2-decomposed GaN epilayer
Yu TIAN1,2, Huiquan CHEN2, Xiaolong ZHU1(), Guang ZHENG1, Jiangnan DAI2
1. Department of Physics, Jianghan University, Wuhan 430056, China; 2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Download: PDF(616 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reported a simple and effective method for fabricating and patterning highly ordered ZnO nanorod arrays on H2-decomposed GaN epilayer via hydrothermal route. The edge of pattern, which has been decomposed by H2 flow, provides appropriate nucleation sites for the selective-growth of aligned ZnO nanorods. The density of ZnO nanorod arrays assembled the hexagonal pattern can be tuned by varying the solution concentrations, growth time and reaction temperatures. The results have demonstrated that the ZnO nanorods are highly uniform in diameter and height with perfect alignment and are epitaxially grown along [0001] direction. This work provides a novel and accessible route to prepare oriented and aligned ZnO nanorod arrays pattern. And the aligned ZnO nanorods form an ideal hexagonal pattern that might be used in many potential applications of ZnO nanomaterials.

Keywords ZnO nanorod      GaN epilayer      hexagonal pattern      hydrothermal     
Corresponding Authors: ZHU Xiaolong,Email:xlzhu.jhun@gmail.com   
Issue Date: 05 December 2013
 Cite this article:   
Yu TIAN,Huiquan CHEN,Xiaolong ZHU, et al. Selective growth and characterization of ZnO nanorods assembled a hexagonal pattern on H2-decomposed GaN epilayer[J]. Front Optoelec, 2013, 6(4): 440-447.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-013-0350-x
http://journal.hep.com.cn/foe/EN/Y2013/V6/I4/440
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu TIAN
Huiquan CHEN
Xiaolong ZHU
Guang ZHENG
Jiangnan DAI
Fig.1  (a) Top-view of the patterned and aligned ZnO nanorod arrays on the H-decomposed GaN epilayer grown by hydrothermal reaction; (b, c) top-view and 30° tilt view nanorods assembled a hexagonal pattern; (d, e) other nanorods distributed perpendicular to the GaN epilayer surface without regular distribution
Fig.2  (a) XRD pattern of ZnO nanorod arrays on the H-decomposed GaN epilayer; (b) HRTEM image of a single ZnO nanorod confirming growth along the [0001] direction, inset is a low-resolution bright-field TEM image of the corresponding single ZnO nanorod where the area of analysis is indicated by the black circle
Fig.3  Patterned ZnO nanorod arrays on H-decomposed GaN epilayer growing at different solution concentrations, growth times and reaction temperatures. (A, A) 0.002 and 0.01 mol/L, 105°C for 2 h; (B, B) 4 and 7 h, 0.05 mol/L for 105°C; (C, C) 125 and 160°C, 0.05 mol/L for 4 h; (D, D) SEM images of ZnO nanorod growing on GaN epilayer without decomposition
samplesconcentration/(mol?L-1)growth time/htemperature/°C
A1A2B1B2C1C20.0020.010.050.050.050.05224744105105105105125160
Tab.1  Experimental conditions of ZnO nanorod growing at different solution concentration, growth time and reaction temperature
Fig.4  (a) Schematic of fabrication of patterned ZnO nanorod arrays pattern on H-decomposed GaN epilayer; (b) SEM image of a hexagonal pattern has been obtained by H decomposed; (c) SEM image of ZnO nanorod arrays grown at the edge of the hexagonal pattern
Fig.5  (a) PL spectrum of patterned ZnO nanorod arrays grow on H-decomposed GaN epilayer; (b) PL spectra of other samples grown on different experiments
1 Wang X D, Song J H, Liu J, Wang Z L. Direct-current nanogenerator driven by ultrasonic waves. Science , 2007, 316(5821): 102-105
doi: 10.1126/science.1139366 pmid:17412957
2 Lee S W, Jeong M C, Myoung J M, Chae G S, Chung I J. Magnetic alignment of ZnO nanowires for optoelectronic device applications. Applied Physics Letters , 2007, 90(13): 133115
doi: 10.1063/1.2717575
3 Lee Y J, Ruby D S, Peters D W, McKenzie B B, Hsu J W P. ZnO nanostructures as efficient antireflection layers in solar cells. Nano Letters , 2008, 8(5): 1501-1505
doi: 10.1021/nl080659j pmid:18416581
4 Lin M S, Chen C C, Wang W C, Lin C F, Chang S Y. Fabrication of the selective-growth ZnO nanorods with a hole-array pattern on a p-type GaN:Mg layer through a chemical bath deposition process. Thin Solid Films , 2010, 518(24): 7398-7402
doi: 10.1016/j.tsf.2010.05.017
5 Xu S, Xu C, Liu Y, Hu Y F, Yang R S, Yang Q, Ryou J H, Kim H J, Lochner Z, Choi S, Dupuis R, Wang Z L. Ordered nanowire array blue/near-UV light emitting diodes. Advanced Materials , 2010, 22(42): 4749-4753
doi: 10.1002/adma.201002134 pmid:20862713
6 Ng H T, Han J, Yamada T, Nguyen P, Chen Y P, Meyyappan M. Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor. Nano Letters , 2004, 4(7): 1247-1252
doi: 10.1021/nl049461z
7 Kim D S, Ji R, Fan H J, Bertram F, Scholz R, Dadgar A, Nielsch K, Krost A, Christen J, G?sele U, Zacharias M. Laser-interference lithography tailored for highly symmetrically arranged ZnO nanowire arrays. Small , 2007, 3(1): 76-80
doi: 10.1002/smll.200600307 pmid:17294473
8 Hochbaum A I, Fan R, He R, Yang P. Controlled growth of Si nanowire arrays for device integration. Nano Letters , 2005, 5(3): 457-460
doi: 10.1021/nl047990x pmid:15755094
9 Dong J J, Zhang X W, Yin Z G, Zhang S G, Wang J X, Tan H R, Gao Y, Si F T, Gao H L. Controllable Growth of Highly Ordered ZnO Nanorod Arrays via Inverted Self-Assembled Monolayer Template. Appl. Mater. Interfaces , 2011, 3(11): 4388-4395
doi: 10.1021/am2010288
10 Fan H J. B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost, M. Zacharias. Journal of Crystal Growth , 2006, 287: 34-38
doi: 10.1016/j.jcrysgro.2005.10.038
11 Zeng H B, Xu X J, Bando Y, Gautam U K, Zhai T Y, Fang X S, Liu B D, Golberg D. Template Deformation-Tailored ZnO Nanorod/Nanowire Arrays: Full Growth Control and Optimization of Field-Emission. Advanced Functional Materials , 2009, 19(19): 3165-3172
doi: 10.1002/adfm.200900714
12 Cheng C, Lei M, Feng L, Wong T L, Ho K M, Fung K K, Loy M M T, Yu D P, Wang N. High-quality ZnO nanowire arrays directly fabricated from photoresists. ACS Nano , 2009, 3(1): 53-58
doi: 10.1021/nn800527m pmid:19206248
13 Hong Y J, An S J, Jung H S, Lee C H, Yi G C. Position-Controlled Selective Growth of ZnO Nanorods on Si Substrates Using Facet-Controlled GaN Micropatterns. Advanced Materials , 2007, 19(24): 4416-4419
doi: 10.1002/adma.200701203
14 Hong Y J, Yoo J, Doh Y J, Kang S H, Kong K J, Kim M, Lee D R, Oh K H, Yi G C J. Controlled epitaxial growth modes of ZnO nanostructures using different substrate crystal planes. Materials Chemistry , 2009, 19(7): 941-947
doi: 10.1039/b816034a
15 Le H Q, Chua S J, Koh Y W, Loh K P, Chen Z, Thompson C V, Fitzgerald E A. Growth of single crystal ZnO nanorods on GaN using an aqueous solution method. Applied Physics Letters , 2005, 87(10): 101908
doi: 10.1063/1.2041833
16 Wei Y G, Wu W Z, Guo R, Yuan D J, Das S, Wang Z L. Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays. Nano Letters , 2010, 10(9): 3414-3419
doi: 10.1021/nl1014298 pmid:20681617
17 Tay C B, Le H Q, Chua S J, Loh K P J. Empirical Model for Density and Length Prediction of ZnO Nanorods on GaN Using Hydrothermal Synthesis. Electrochem Soc. , 2007, 154(9): K45
doi: 10.1149/1.2750449
18 Le H Q, Chua S J, Koh Y W, Loh K P, Fitzgerald E A. Systematic studies of the epitaxial growth of single-crystal ZnO nanorods on GaN using hydrothermal synthesis. Journal of Crystal Growth , 2006, 293(1): 36-42
doi: 10.1016/j.jcrysgro.2006.04.082
19 Gao H Y, Yan F W, Li J M, Zeng Y P, Wang J X. Synthesis and characterization of ZnO nanorods and nanoflowers grown on GaN-based LED epiwafer using a solution deposition method. Journal of Physics. D, Applied Physics , 2007, 40(12): 3654-3659
doi: 10.1088/0022-3727/40/12/015
20 Zhou H L, Shao P G, Chua S J, Kan J A, Bettiol A A, Osipowicz T, Ooi K F, Goh G K L, Watt F. Selective Growth of ZnO Nanorod Arrays on a GaN/Sapphire Substrate Using a Proton Beam Written Mask. Crystal Growth & Design , 2008, 8(12): 4445-4448
doi: 10.1021/cg800267v
21 Ye B U, Yu H, Kim M H, Lee J L, Baik J M. Modulating ZnO Nanostructure Arrays on Any Substrates by Nanolevel Structure Control. Journal of Physical Chemistry C , 2011, 115(16): 7987-7992
doi: 10.1021/jp201042t
22 Sun Y, Riley J, Ashfold M N R. Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates. Journal of Physical Chemistry B , 2006, 110(31): 15186-15192
doi: 10.1021/jp062299z
23 Vispute R D, Talyansky V, Choopun S, Sharma R P, Venkatesan T, He M, Tang X, Halpern J B, Spencer M G, Li Y X, Salamanca-Riba L G, Iliadis A A, Jones K A. Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Applied Physics Letters , 1998, 73(3): 348
doi: 10.1063/1.121830
24 Huang S Y, Yang J R. A Transmission Electron Microscopy Observation of Dislocations in GaN Grown on (0001) Sapphire by Metal Organic Chemical Vapor Deposition. Japanese Journal of Applied Physics , 2008, 47(10): 7998-8002
doi: 10.1143/JJAP.47.7998
25 Morin S A, Jin S. Screw dislocation-driven epitaxial solution growth of ZnO nanowires seeded by dislocations in GaN substrates. Nano Letters , 2010, 10(9): 3459-3463
doi: 10.1021/nl1015409 pmid:20718407
26 Ozgur U, Alivov Ya I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H J. A comprehensive review of ZnO materials and devices. Journal of Applied Physics , 2005, 98(4): 041301
doi: 10.1063/1.1992666
27 Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P. Room-temperature ultraviolet nanowire nanolasers. Science , 2001, 292(5523): 1897-1899
doi: 10.1126/science.1060367 pmid:11397941
28 Zhang J, Sun L D, Liao C S, Yang C H. A simple route towards tubular ZnO. Chemical Communications (Cambridge) , 2002, 3(3): 262-263
doi: 10.1039/b108863g
29 Li Z Q, Xiong Y J, Xie Y. Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route. Inorganic Chemistry , 2003, 42(24): 8105-8109
doi: 10.1021/ic034029q pmid:14632532
30 Chen S J, Liu Y C, Shao C L, Mu R, Lu Y M, Zhang J Y, Shen D Z, Fan X W. Structural and Optical Properties of Uniform ZnO Nanosheets. Advanced Materials , 2005, 17(5): 586-590
doi: 10.1002/adma.200401263
31 Zeng H, Duan G T, Li Y, Yang S K, Xu X X, Cai W P. Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls. Advanced Functional Materials , 2010, 20(4): 561 -572
doi: 10.1002/adfm.200901884
Related articles from Frontiers Journals
[1] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[2] Xiaoyan LI,Pei LIANG,Le WANG,Feihong YU. Preparation and characterization of high uniformity zinc oxide nanosheets[J]. Front. Optoelectron., 2014, 7(4): 509-512.
[3] Ronghui QUE. High-yield synthesized silver orthophosphate nanowires and their application in photoswitch[J]. Front Optoelec Chin, 2011, 4(2): 176-180.
[4] Zhiyong BAO, Li ZHANG, Yucheng WU. Silver nanoparticles and silver molybdate nanowires complex for surface-enhanced Raman scattering substrate[J]. Front Optoelec Chin, 2011, 4(2): 166-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed