Please wait a minute...

Frontiers of Optoelectronics

Front Optoelec Chin    2011, Vol. 4 Issue (1) : 114-120     DOI: 10.1007/s12200-011-0152-y
RESEARCH ARTICLE |
Surface-enhanced fluorescence from copper nanoparticles on silicon nanowires
Shujuan ZHUO1, Mingwang SHAO1(), Liang CHENG1, Ronghui QUE1, Dorthy Duo Duo MA2, Shuit Tong LEE2()
1. Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China; 2. Center of Super-Diamond and Advanced Films and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China
Download: PDF(584 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A method to enhance surface plasmon coupled fluorescence from copper nanoparticles on silicon nanowires is presented. Owing to resonant plasmons oscillation on the surface of Cu/Si nanostructure, the fluorescence peaks of several lanthanide ions (praseodymium ions, Pr3+, neodymium ions Nd3+, holmium ions Ho3+, and erbium ions Er3+) were markedly enhanced with the enhancement of maximal 2 orders of magnitude, which was larger than that caused by unsupported Cu nanoparticles. These results might be explained by the local field overlap originated from the closed and fixed copper nanoparticles on silicon nanowires.

Keywords Cu/Si nanostructure      surface-enhanced fluorescence      lanthanide ions      resonant plasmons oscillation     
Corresponding Authors: SHAO Mingwang,Email:mwshao@suda.edu.cn; LEE Shuit Tong,Email:apannale@cityu.edu.hk   
Issue Date: 05 March 2011
 Cite this article:   
Shujuan ZHUO,Mingwang SHAO,Liang CHENG, et al. Surface-enhanced fluorescence from copper nanoparticles on silicon nanowires[J]. Front Optoelec Chin, 2011, 4(1): 114-120.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-011-0152-y
http://journal.hep.com.cn/foe/EN/Y2011/V4/I1/114
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shujuan ZHUO
Mingwang SHAO
Liang CHENG
Ronghui QUE
Dorthy Duo Duo MA
Shuit Tong LEE
Fig.1  SEM image and EDS (insert) of SiNWs
Fig.1  SEM image and EDS (insert) of SiNWs
Fig.2  XRD patterns of (a) SiNWs; (b) Cu/Si nanostructure
Fig.2  XRD patterns of (a) SiNWs; (b) Cu/Si nanostructure
Fig.3  Fluorescence spectra of Ln free of Cu/Si nanomaterials. (a) Different concentrations of Pr; (b) 0.05 M Nd; (c) 0.05 M Ho; (d) 0.05 M Er
Fig.3  Fluorescence spectra of Ln free of Cu/Si nanomaterials. (a) Different concentrations of Pr; (b) 0.05 M Nd; (c) 0.05 M Ho; (d) 0.05 M Er
Fig.4  Fluorescence spectra of different Pr concentrations as adding of (a), (c), (e) Cu/Si nanomaterials, and (b), (d), (f) unsupported Cu nanoparticles
Fig.4  Fluorescence spectra of different Pr concentrations as adding of (a), (c), (e) Cu/Si nanomaterials, and (b), (d), (f) unsupported Cu nanoparticles
Fig.5  Fluorescence spectra of Nd as adding of different nanoparticles. (a) Cu/Si nanomaterials;(b) unsupported Cu nanoparticles
Fig.5  Fluorescence spectra of Nd as adding of different nanoparticles. (a) Cu/Si nanomaterials;(b) unsupported Cu nanoparticles
Fig.6  Fluorescence spectra of the Ho as adding of different nanoparticles. (a) Cu/Si nanomaterials; (b) unsupported Cu nanoparticles
Fig.6  Fluorescence spectra of the Ho as adding of different nanoparticles. (a) Cu/Si nanomaterials; (b) unsupported Cu nanoparticles
Fig.7  Fluorescence spectra of Er as adding of different nanoparticles. (a) Cu/Si nanomaterials; (b) unsupported Cu nanoparticles
Fig.7  Fluorescence spectra of Er as adding of different nanoparticles. (a) Cu/Si nanomaterials; (b) unsupported Cu nanoparticles
1 Chance R R, Prock A, Silbey R. Molecular fluorescence and energy transfer near interfaces. Advances in Chemical Physics , 1978, 37: 1-65
doi: 10.1002/9780470142561.ch1
2 Ray K, Badugu R, Lakowicz J R. Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study. Journal of the American Chemical Society , 2006, 128(28): 8998-8999
doi: 10.1021/ja061762i
3 Lakowicz J R. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics , 2006, 1(1): 5-33
doi: 10.1007/s11468-005-9002-3
4 Aslan K, Holley P, Geddes C D. Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates. Journal of Materials Chemistry , 2006, 16(27): 2846-28525 .
doi: 10.1039/b604650a
5 Ray K, Chowdhury M H, Lakowicz J R. Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region. Analytical Chemistry , 2007, 79(17): 6480-6487
doi: 10.1021/ac071363l
6 Mertens H, Koenderink A F, Polman A. Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model. Physical Review B: Condensed Matter and Materials Physics , 2007, 76(11): 115123-1-115123-12
7 Lakowicz J R. Radiative decay engineering: biophysical and biomedical applications. Analytical Biochemistry , 2001, 298(1): 1-24
doi: 10.1006/abio.2001.5377
8 Zhang J, Fu Y, Lakowicz J R. Emission behavior of fluorescently labeled silver nanoshell: enhanced self-quenching by netal nanostructure. Journal of Physical Chemistry C , 2007, 111(5): 1955-1961
9 Lakowicz J R. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Analytical Biochemistry , 2005, 337(2): 171-194
doi: 10.1016/j.ab.2004.11.026
10 Bjerneld E J, F?ldes-Papp Z, K?ll M, Rigler R. Single-molecule surface-enhanced raman and fluorescence correlation spectroscopy of horseradish peroxidase. Journal of Physical Chemistry B , 2002, 106(6): 1213-1218
doi: 10.1021/jp012268y
11 Aslan K, Lakowicz J R, Geddes C D. Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence. The Journal of Physical Chemistry B , 2005, 109(13): 6247-6251
doi: 10.1021/jp044235z
12 Zhang Y X, Aslan K, Previte M J R, Geddes C D. Metal-enhanced fluorescence from copper substrates. Applied Physics Letters , 2007, 90(17): 173116
doi: 10.1063/1.2732185
13 Baluschev S, Yu F, Miteva T, Ahl S, Yasuda A, Nelles G, Knoll W, Wegner G. Metal-enhanced up-conversion fluorescence: effective triplet-triplet annihilation near silver surface. Nano Letters , 2005, 5(12): 2482-2484
doi: 10.1021/nl0517969
14 Zhuo S J, Shao M W, Cheng L, Que R H, Zhuo S J, Ma D D D, Lee S T. Surface-enhanced fluorescence of praseodymium ions (Pr3+) on silver/silicon nanostructure. Applied Physics Letters , 2010, 96(10): 103108-1-103108-3
15 Ahrens B, Eisenschmidt C, Johnson J A, Miclea P T, Schweizer S. Structural and optical investigations of Nd-doped fluorozirconate-based glass ceramics for enhanced upconverted fluorescence. Applied Physics Letters , 2008, 92(6): 061905
doi: 10.1063/1.2837542
16 Aisaka T, Fujii M, Hayashi S. Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films. Applied Physics Letters , 2008, 92(13): 132105
doi: 10.1063/1.2896303
17 Capobianco J A, Boyer J C, Vetrone F, Speghini A, Bettinelli M. Optical spectroscopy and upconversion studies of Ho3+-doped Bulk and Nanocrystalline Y2O3. Chemistry of Materials , 2002, 14(7): 2915-2921
doi: 10.1021/cm011584m
18 Bünzli J C G. Benefiting from the unique properties of lanthanide ions. Accounts of Chemical Research , 2006, 39(1): 53-61
doi: 10.1021/ar0400894
19 Tissue B M. Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chemistry of Materials , 1998, 10(10): 2837-2845
doi: 10.1021/cm9802245
20 Hasegawa Y, Wada Y, Yanagida S. Strategies for the design of luminescent lanthanide(III) complexes and their photonic applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews , 2004, 5(3): 183-202
doi: 10.1016/j.jphotochemrev.2004.10.003
21 Zhang J, Malicka J, Gryczynski I, Lakowicz J R. Surface-enhanced fluorescence of fluorescein-labeled oligonucleotides capped on silver nanoparticles. Journal of Physical Chemistry B , 2005, 109(16): 7643-7648
doi: 10.1021/jp0490103
22 Shao M W, Shan Y Y, Wong N B, Lee S T. Silicon nanowire sensors for bioanalytical application: glucose and hydrogen peroxide detection. Advanced Functional Materials , 2005, 15(9): 1478-1482
doi: 10.1002/adfm.200500080
23 Lisiecki I, Pileni M P. Synthesis of copper metallic clusters using reverse micelles as microreactors. Journal of the American Chemical Society , 1993, 115(10): 3887-3896
doi: 10.1021/ja00063a006
24 Shao M W, Cheng L, Zhang X H, Ma D D D, Lee S T. Excellent photocatalysis of HF-treated silicon nanowires. Journal of the American Chemical Society , 2009, 131(49): 17738-17739
doi: 10.1021/ja908085c
25 Tsang C H A, Liu Y, Kang Z H, Ma D D D, Wong N B, Lee S T. Metal (Cu, Au)-modified silicon nanowires for high-selectivity solvent-free hydrocarbon oxidation in air. Chemical Communications , 2009, (39): 5829-5831
doi: 10.1039/b912341e
26 Gunnarsson L, Bjerneld E J, Xu H, Petronis S, Kasemo B, K?ll M. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Applied Physics Letters , 2001, 78(6): 802-804
doi: 10.1063/1.1344225
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed