Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2010, Vol. 3 Issue (2) : 143-152     DOI: 10.1007/s12200-010-0007-y
Research articles |
Prospects and challenges of silicon/germanium on-chip optoelectronics
Erich KASPER,
Institute of Semiconductor Engineering, University of Stuttgart, Stuttgart 70569, Germany;
Download: PDF(387 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract On-chip optoelectronics allows the integration of optoelectronic functions with microelectronics. Recent advances in silicon substrate fabrication (silicon-on-insulator (SOI)) and in heterostructure engineering (SiGe/Si) push this field to compact (chipsize) waveguide systems with high-speed response (50-GHz subsystems realized, potential with above 100 GHz). In this paper, the application and requirements, the future solutions, the components and the physical effects are discussed.
A very high refractive index contrast of the waveguide Si-core/SiO2-cladding is responsible for the submicron line widths and strong bendings realized in chipsize waveguide lines and passive devices. The SiGe/Si heterostructure shifts the accessible wavelength into infrared up to telecommunication wavelengths 1.30–1.55 µm. Germanium, although also an indirect semiconductor as silicon, offers direct optical transitions which are only 140 meV above the dominant indirect one. This is the basic property for realizing high-speed devices for future above 10 GHz on-chip clocks and, eventually, a laser source monolithically integrated on the Si substrate.
Issue Date: 05 June 2010
 Cite this article:   
Erich KASPER. Prospects and challenges of silicon/germanium on-chip optoelectronics[J]. Front. Optoelectron., 2010, 3(2): 143-152.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-010-0007-y
http://journal.hep.com.cn/foe/EN/Y2010/V3/I2/143
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Erich KASPER
Morschbach M, Oehme M, Kasper E. Visible light emission by a reverse-biasedintegrated silicon diode. IEEE Transactionson Electron Devices, 2007, 54(5): 1091―1094

doi: 10.1109/TED.2007.894247
Splett A, Schüppert B, Petermann K, Kasper E, Kibbel H, Herzog H J. Waveguide pin photodetectorcombination in SiGe. In: Proceedings ofOFC/IOOC Technical Digest Series. 1993, 4: 116―117
Taillaert D, Bogaerts W, Bienstman P, Krauss T F, Van Daele P, Moerman I, Verstuyft S, De Mesel K, Baets R. An out-of-plane grating couplerfor efficient butt-coupling between compact planar waveguides andsingle-mode fibers. IEEE Journal of QuantumElectronics, 2002, 38(7): 949―955

doi: 10.1109/JQE.2002.1017613
Bogaerts W, Dumon P, Brouckaert J, De Vos K, Taillaert D, Van Thourhout D, Baets R. Ultra-compact optical filters in silicon-on-insulatorand their applications. In: Proceedingsof the 4th IEEE International Conference on Group IV Photonics. 2007, 1―3
Yu J, Yu H J, Zhu Y, Yu Y D. Theoretical and experimental studies of an ultra-compact photoniccrystal corner mirror based on silicon-on-insulator. In: Proceedings of the 5th IEEE International Conference on Group IVPhotonics. 2008, 222―224
Zhu Y, Li Z Y, Han W H, Fan Z C, Yu Y D, Yu J Z. High efficiency silicon-on-insulator grating couplerbetween submicron waveguides and fibers. Proceedings of SPIE, 2009, 7516: 75160A

doi: 10.1117/12.843423
Klingshirn C F. Semiconductor Optics. Berlin: Springer-Verlag, 2005
Gnutzmann U, Clausecker K. Theoryof direct optical transitions in an optical indirect semiconductorwith a superlattice structure. AppliedPhysics A, 1974, 3(1): 9―14
Zachai R, Eberl K, Abstreiter G, Kasper E, Kibbel H. Photoluminescencein short period Si/Ge strained layer superlattices grown on Si andGe substrates. Surface Science, 1990, 228(1―3): 267―269

doi: 10.1016/0039-6028(90)90306-S
Pavesi L, Dal Negro L, Mazzoleni C, Franzo G, Priolo F. Opticalgain in silicon nanocrystals. Nature, 2000, 408(6811): 440―444

doi: 10.1038/35044012
Cloutier S G, Kossyrev P A, Xu J. Optical gain and stimulatedemission in periodic nanopatterned crystalline silicon. Nature Materials, 2005, 4(12): 887―891

doi: 10.1038/nmat1530
Kittler M, Reiche M, Arguirov T, Seifert W, Yu X. Silicon-basedlight emitters. Physica status solidi A, 2006, 203(4): 802―809
Sze S M, Ng K K. Physics ofSemiconductor Devices. 3rd ed. New York: Wiley, 2006

doi: 10.1002/0470068329
Splett A, Zinke T, Petermann K, Kasper E, Kibbel H, Herzog H J, Presting H. Integrationof waveguides and photodetectors using SiGe multi-quantum-wells withtriangular shaped Ge-profile. In: Proceedingsof Integrated Photonics Research, 1994, 3: 149―150
Klinger S, Berroth M, Kaschel M, Oehme M, Kasper E. Geon Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz. IEEE Photonics Technology Letters, 2009, 21(13): 920―922

doi: 10.1109/LPT.2009.2020510
Kaschel M, Oehme M, Kirfel O, Kasper E. Spectral responsivity of fastGe photodetectors on SOI. Solid-State Electronics, 2009, 53(8): 909―911

doi: 10.1016/j.sse.2009.04.017
Oehme M, Werner J, Kasper E, Jutzi M, Berroth M. Highbandwidth Ge p-i-n photodetector integrated on Si. Applied Physics Letters, 2006, 89(7): 071117

doi: 10.1063/1.2337003
Oehme M, Werner J, Kasper E, Klinger S, Berroth M. Photocurrentanalysis of a fast Ge p-i-n detector on Si. Applied Physics Letters, 2007, 91(5): 051108

doi: 10.1063/1.2757599
Dehlinger G, Koester S J, Schaub J D, Chu J O, Ouyang Q C, Grill A. High-speed germanium-on-SOIlateral PIN photodiodes. IEEE PhotonicsTechnology Letters, 2004, 16(11): 2547―2549

doi: 10.1109/LPT.2004.835631
Dosunmu O I, Cannon D D, Emsley M K, Kimerling L C, Ünlü M S. High-speed resonant cavity enhance Ge photodetectors on reflectingSi substrates for 1550-nm operation. IEEEPhotonics Technology Letters, 2005, 17(1): 175―177

doi: 10.1109/LPT.2004.836917
Rouvière M, Vivien L, Le Roux X, Mangeney J, Crozat P, Hoarau C, Cassan E, Pascal D, Laval S, Fédéli J M, Damlencourt J F, Hartmann J M, Kolev S. Ultrahigh speed germanium-on-silicon-on-insulatorphotodetectors for 1.31 and 1.55?μm operation. Applied Physics Letters, 2005, 87(23): 231109

doi: 10.1063/1.2139837
Jutzi M, Berroth M, Wöhl G, Oehme M, Kasper E. Ge-on-Sivertical incidence photodiodes with 39-GHz bandwidth. IEEE Photonics Technology Letters, 2005, 17(7): 1510―1512

doi: 10.1109/LPT.2005.848546
Masini G, Capellin G, Witzens J, Gunn C. A 1550?nm, 10?Gbps monolithic optical receiver in 130?nmCMOS with integrated Ge waveguide photodetector. In: Proceedings of the 5th IEEE International Conference on Group IVPhotonics. 2007, 28―30
Vivien L, Marris-Morini D, Mangeney J, Crozat P, Cassan E, Laval S, Fédéli J M, Damlencourt J F, Lecunff Y. 42?GHzwaveguide germanium-on-silicon vertical PIN photodetector. In: Proceedings of the 5th IEEE International Conferenceon Group IV Photonics. 2008, 185―187
Suh D, Kim S, Joo J, Kim G, Kim I G. 35?GHz Ge p-i-n photodetectorsimplemented using RPCVD. In: Proceedingsof the 5th IEEE International Conference on Group IV Photonics. 2008, 191―193
Kasper E. Properties of Strained and Relaxed Silicon Germanium. London, UK: Institution of Electrical Engineers, 1995
Kasper E, Paul D J. Silicon QuantumIntegrated Circuits—Silicon-Germanium Heterostructure Devices:Basics and Realisations. Heidelberg: Springer-Verlag, 2005
Kasper E, Klingshirn C. SemiconductorQuantum Structures: Optical Properties of Group IV Semiconductors. Optical Properties 3, Landolt Börnstein, NewSeries. Berlin: Springer-Verlag, 2007
Kasper E, Müssig H J, Grimmeiss H G. Advances in Electronic Materials. Materials Science Forum. Zürich: TransTech Publications, 2009
Yu J, Kasper E, Oehme M. 1.55-μm resonant cavityenhanced photodiode based on MBE grown Ge quantum dots. Thin Solid Films, 2006, 508(1―2): 396―398

doi: 10.1016/j.tsf.2005.07.323
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed