Please wait a minute...

Frontiers of Mechanical Engineering

Front. Mech. Eng.    2016, Vol. 11 Issue (1) : 60-86
Self-propelled automatic chassis of Lunokhod-1: History of creation in episodes
Mikhail MALENKOV()
Science and Technology Center “ROCAD” CJSC, Polytechnical University, Saint-Petersburg, Russia
Download: PDF(3296 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

This report reviews the most important episodes in the history of designing the self-propelled automatic chassis of the first mobile extraterrestrial vehicle in the world, Lunokhod-1. The review considers the issues in designing moon rovers, their essential features, and the particular construction properties of their systems, mechanisms, units, and assemblies. It presents the results of exploiting the chassis of Lunokhod-1 and Lunokhod-2. Analysis of the approaches utilized and engineering solutions reveals their value as well as the consequences of certain defects.

Keywords moon rover      self-propelled chassis      propulsion      wheel      suspension      soil properties      cross-country ability     
Corresponding Authors: Mikhail MALENKOV   
Online First Date: 23 February 2016    Issue Date: 02 March 2016
 Cite this article:   
Mikhail MALENKOV. Self-propelled automatic chassis of Lunokhod-1: History of creation in episodes[J]. Front. Mech. Eng., 2016, 11(1): 60-86.
E-mail this article
E-mail Alert
Articles by authors
Fig.1  V. S. Starovoitov (1919–2001) [24]
Fig.2  A. L. Kemurdjian (1921–2003) [24]
Fig.3  Leading specialists of space studies, 1971 [37]

(Left to right) top row: N. E. Bechvay, B. V. Gladkih, V. M. Tarasov, V. V. Gromov, A. I. Egorov, V. V. Grinev, V. Lashkov, V. N. Petriga and G. N. Korepanov; middle row: V. I. Komissarov, I. I. Rozentsveyg, V. K. Mishkinyuk, A. F. Kudryavtsev, B. V. Mitin, P. S. Sologub, R. L. Byhovskaya, V. I. Egorov, M. N. Pligin, B. P. Zarubin, and B. M. Lubenko; bottom row: A. P. Bravchuk, L. O. Vaysfeld, L. N. Polyakov, M. B. Shvartsburg, A. L. Kemurdzhian, A. F. Solovev, M. I. Malenkov, and A. M. Nosov

Fig.4  Layout of the moon craft in accordance with the N1-L3 project [12]

1–Moon landing unit; 2–Rocket unit E; 3–Cosmonaut cabin; 4–Life support system units; 5–Observation device; 6–Attitude engine unit; 7–Radiators of the temperature-control system; 8–Docking unit

Fig.5  Autograph of S. P. Korolev (the abbreviations are given below with a detailed transcription) reference [12]

The calculation of the moon craft landing should be made for quite hard soil of pumice type

Vertical speed is ≈ 0?m/sec when going down at h=1 m+

Lateral speed should be almost ≈ 0 m/s

28th of October, 1964 S. P. Korolev

Fig.6  Main block of VNII-100—VNIITransmash in Gorelovo (courtesy of VNIITransmash)
Fig.7  Tank testing area of VNII-100 with the first models of the moon rover: (a) With wheeled running gear and (b) with tracked running gear (courtesy of VNIITransmash)
Fig.8  (a) Landing unit of Luna-13 station in deployed configuration; (b) soil measuring penetrometer with a pushed-out indenter [4]
Fig.9  Experimental assembly of R-1: (a) Scheme; (b) photograph (courtesy of VNIITransmash)

1–Supporting block of the tested gear pair; 2–Kinematic pair; 3–Magnetic coupling; 4–Electric motor; 5–Sensors of temperature; 6–Sealings; 7–Pressure-sealed connectors; 8–Torsional spring; 9–Tested gear pair

Fig.10  Scheme of the self-propelled chassis in conjunction with the Lunokhod-1 container (courtesy of VNIITransmash)

1–Left wheel unit; 2–Right wheel unit; 3–Right carrier; 4–Pallet of the container;?5–Left carrier; 6–Container; 7–Cross-country ability assessment device; 8–Chassis automation control unit

Fig.11  Scheme of the integration of the self-propelled chassis with the sealed container (plan view) (courtesy of VNIITransmash)

1–Left block of wheels; 2–Right block of wheels; 3–Right carriers; 4–Sensor of roll and trim; 5–Left carriers; 6–Cables; 7–Device for cross-country ability estimation equipped with 9th wheel; 8–Automatic unit of chassis; V–Direction of forward locomotion; v–Direction of extreme wheels sliding during turning to the right; B–Track; L–Wheel base

Fig.12  Motor-in-wheel module of Lunokhod-1 self-propelled chassis (drawing by V. V. Grinev) [1]

1–Middle hoop; 2–Lug; 3–Outermost hoop; 4–Net; 5–Jet propulsion; 6–Carrier; 7–Fasciculate torsional bar; 8–Balance of the suspension; 9–Reaction arm; 10–Electric traction drive; 11–Spoke; 12–Wheel hub

Fig.13  (a) Block of the motor-in-wheels of the moon rover’s self-propelled chassis; (b) a fragment of a rigid wheel spindle layout after running trials (photo of an exhibit at the museum of VNIITransmash, courtesy of VNIITransmash)
Fig.14  Beam torsion bar: Length 185 mm, rod diameter 8.5 mm [1]
Fig.15  Traction drive kinematic diagram [4]

1−Wheel center; 2−Gearbox housing (epicycle); 4−Rocker; 5−Reaction arm; 6−Brake; 7−Second row of the three-row planetary gearbox; 8−Lock release mechanism; 9−Terminal flexible seal

Fig.16  Motor-in-wheel of Lunokhod-1 (drawing by V. V. Grinev) [1]

1−Hoop; 2−Net; 3−Hub of wheel; 4−Sensor of rotations; 5−Bearings of the hub of the wheel; 6−Balance of suspension; 7−Labyrinth packing; 8−Bearings of the balance; 9−Reaction arm; 10−Pressure-sealed connector; 11−Electric motor; 13−Brake; 14−Epicycle; 15−Three-lane planetary reduction gear; 16−Releasing mechanism; 17−Hollow output shaft with plane of weakness; 18−End seal

Fig.17  Chassis automation control unit of Lunokhod-1 (courtesy of VNIITransmash)
Fig.18  Simplified and macro flowchart of BASh in the remote control structure [1]
Fig.19  Cross-country ability assessment device in transport position (courtesy of VNIITransmash)

1−Upper head; 2−Measuring wheel movement mechanism; 3−Measuring (free rolling) wheel; 4−Lower head; 5−Cone and blade die; 6−Upper wheel movement mechanism

Fig.20  Dependence of the introduction efforts of the depth and type of a surface cover [4]

p−Force/N; H−Immersion depth/cm; 1−Stone destruction; 2−Yield of solid rocks; 3−Soil with increased porosity; 4−Homogeneous soil layer; 5−Layer of loose soil on a solid foundation; 6−Homogeneoues extremely loose soil

Fig.21  Self-propelled chassis of the rover on PSI stand (courtesy of VNIITransmash)
Fig.22  Installation of the test object and loader on the inside part of the TEC-250 chamber flange [4]
Fig.23  Fragment of the annular channel of soil with rail track for truck maintenance and full-size partially dynamically similar test mule of the lunar rover [3]
Fig.24  Ways to simulate the center of gravity of such static full-size mock-ups: Additional mass 1 at the top of the mast, increasing the height of the point of application of thrust on the hook [8]
Fig.25  Fragment of the full-length running tests with a statically similar layout on steep slopes in the area of the volcano Tolbachik on Kamchatka [37]
Fig.26  Remote control drawing of L. N. Polyakov (courtesy of VNIITransmash)
Fig.27  Driver V. G. Dovgan controlling remotely at TsDKC (courtesy of V. G. Dovgan)
Fig.28  Lunokhod-1, 3D model. (a) Front view; (b) rear view (design by D. V. Sidorov)

1−Radiator of a cold contour; 2−Gain antenna (ONA); 3−ONA drives; 4−Corner reflector; 5−Camera slow-scan TV; 6−Device for determining the chemical composition of the soil (RIFMA); 7−Propelled chassis, starboard; 8−Container; 9−Gauge of the lunar vertical; 10−Panoramic camera of vertical scanning; 11−Solar panel; 12−Wide-beam antenna; 13−A cover of the pressurized compartment; 14−Lifting drive pressurized compartment cover; 15−Whip antenna (4 pieces); 16−Radioisotope heater unit; 17−Screen block heater; 18−The ninth freely rolling (dimensional) wheel; 19−Mechanical penetrometer (device for cross-country ability evaluation); 20−A bearing pallet of the container; 21−Self-propelled chassis, left side; 22−Panoramic camera of horizontal scanning

Fig.29  Fragment of the panorama (horizontal scan) of the Moon near the landing station Luna-17 (bright spot on the horizon at the end of the track) and the first tracks on the Moon [1]
Design parameters and operating characteristics on the Moon Lunokhod-1 Lunokhod-2
Gross vehicle mass/kg 756 840
Mass of self-propelled chassis, including BASh and PrOP/kg 108 108
Track B/m 1.6 1.6
Wheelbase L/m 1.7 1.7
Rated speed/(km·h−1) 0.8 0.8 and 2.0
Turning radius at a spot/m 0.0 0.0
Turning radius in motion/m 2.7
Clearance/m 0.38 0.37
Angle of static stability/(° ): Trim 43° 43°
Angle of static stability/(° ): List 45° 45°
Wheel diameter/m 0.51 0.51
Wheel width/m 0.20 0.20
Days 302 125
Path/km 10.5 39.1 (accoring to the latest data)
Actual average speed on the route/(km·h−1) 0.14 0.34
Maximum duration of continuous locomotion/s 1st speed: 50 1st speed: 4372nd speed: 200
Maximum climbing angle 22°−27°* 22°−27°*
Tab.1  Main design and performance characteristics
Alexander Leonovich KemurdjianA. K. Aleksandrov, A. K. Leonovich
Pavel Stepanovich SologubP. S. Semenov, P. S. Pavlov
Felix Pavlovich ShpakF. P. Pavlov, F. P. Yakovlev
Anatoly Fedorovich SolovyovA. F. Grachev
Viktor Ivanovich KomissarovV. I. Komarov, V. P. Komarov
Georgy Nikolaevich KorepanovG. N. Shesternev
Vyacheslav Konstantinovich MishkinyukV. K. Mishkin
Anatoly Vladimirovich MitskevichA. V. Rybakov
Raisa Lazarevna BykhovskayaR. L. Bykova
Mikhail Ivanovich MalenkovM. I. Bolshov, M. I. Isakov
Mikhail Borisovich SchwarzburgM. B. Kolesov
Peter Naumovich BrodskyP. N. Naumov
Yuri Petrovich KitlyashYu. P. Kotlov
Lev Nikolaevich PolyakovL. N. Polenov
Igor Sergeevich BolkhovitinovB. I. Garin, I. S. Garin
Victor Georgievich BabenkoV. B. Georgiev
Valery Nikolaevich PetrigaV. K. Petrov, V. N. Petrov
Victor Nikiforovitch PlohihV. N. Teplov
Eugeny Viktorovich AvotinE. V. Avotinsh
Boris Vasilyevich GladkikhB. V. Borodachev
Leonid Oskarovich VaysfeldL. O. Vaysberg
Vladimir Pavlovich VelichkoV. P. Velikanov
Mikhail Nikolaevich PiliginM. N. Vladimirov
Vyacheslav Efimovich PapirnyV. E. Papiryan
Israel Isidorovich RosentsweigI. I. Rozov
Semyon Alekseevich ShepelS. A. Shvetsov
Anatoly Fedorovich KudryavtsevA. F. Kuleshov
Oleg Vladimirovich MininO. V. Volodin
Yuri Ivanovich VasilievYu. I. Vasin
Lidija Timofeevna CherepanovaL. T. Panova
1 Anisov  K S, Mastakov   V I, Ivanov  O G, . Design and operation of Luna-17 station and Lunokhod-1. In: Vinogradov A P, ed. Mobile Laboratory on the Moon: Lunokhod-1. Volume 1. Moscow: Science, 1971, 7–20 (in Russian)
2 Leonovich  A K, Gromov  V V, Rybakov  A V, . The study of the mechanical properties of lunar soil on a self-propelled machine Lunokhod-1. In: Vinogradov A P, ed. Mobile Laboratory on the Moon: Lunokhod-1. Volume 1. Moscow: Science, 1971, 78–88 (in Russian)
3 Leonovich  A K, Ivanov  O G, Pavlov  P S, . Particularities of the self-propelled chassis performance under the Moon conditions. In: Barsukov V L, ed. Mobile Laboratory on the Moon: Lunokhod-1. Volume 2. Moscow: Science, 1978, 25–66 (in Russian)
4 Kemurdjian  A L, Gromov  V V, Cherkasov  I I, . Automatic station for the study of the surface cover of the Moon. Mechanical Engineering, 1976, 103–199 (in Russian)
5 Malenkov M I, Kemurdjian A L. Traction dynamics of a planetokhod. In: Petrov B N, Kemurdjian A L, eds. The Dynamics of A Planetokhod. Moscow: Science, 1979, 56–195 (in Russian)
6 Gromov V V, Mishkinuk V K, Petriga V N. Lunokhod-1 and Lunokhod-2. In: Kemurdjian A L ed. Planetokhody (Planet-rovers). Moscow: Mashinostroenie, 1982, 292–303 (in Russian)
7 Gromov V V, Kemurdjian A L. Methods of studying of properties of soil. In: Kemurdjian A L, ed. Taveling Across the Lunar and Planet Soils. Moscow: Mashinostroenie, 1986, 7–35 (in Russian)
8 Rozentsweig I I, Mishkinuk V K, Petriga V N. Ensuring working capacity and test of knots of friction. Trial runs of planet rovers. In: Kemurdjian A L, ed. Planetokhody (Planet-rovers). 2nd ed. Moscow: Engineering, 1993, 247–331 (in Russian)
9 Kemurdjian  A L. From the Moon Rover to the Mars Rover. The Planetary Report. 1990, 10(4): 4–11
10 Kemurdjian A L, Gromov V V, Kazhukalo I F, . Soviet Developments of Planet Rovers in period of 1964–1990. In: Procedings of First International Symposium Missions, Technologies, and Design of Planetary Rovers. Toulouse, 1992, 25–43
11 Kupriyanov V N. About the history of the emergence of the first open publications of VNIITransmash experts on space subjects. In: Abstracs of International Scientific Practical Conference “Features of Development of Russian Space Industry and Prospects of Its Fusion into the System of International Economic Ties”. St. Petersburg: BGTU Voenmech, 2007, 156–159 (in Russian)
12 Ashmarin Yu A, Babkov O I, Bobkov V N, . Rocket and space complex N1-L3. In: Semenov Yu P, ed. Korolev S P Rocket and Space Corporation “Energia”. 1946–1996. Moscow: Menosovpoligraf, 1996, 248–261 (in Russian)
13 Asyushkin V A, Greshilov P A, Efanov V V, . Spacecraft for lunar exploration. In: Polishuk G M, Pichkhadse K M, eds. The Unmanned Spacecraft for Fundamental and Applied Research. Moscow: MAI-PRINT, 2010, 21–114 (in Russian)
14 Bakh  I V, Grishin  V, Polikarpov  V V. The main stages of development. In: Potemkin E K, ed. VNIITransmash—Pages of History. St. Petersburg: Peter Fund, 1999, 3–47 (in Russian)
15 Bolkhovitinov  I S, Gromov  V V, Malenkov  M I, . Creation of space technology. In: Potemkin E K, ed. VNIITransmash—Pages of History. St. Petersburg: Peter Fund, 1999, 226–263 (in Russian)
16 Kemurdjian  A L, Malenkov  M I. The role of S. P. Korolev and G. N. Babakin in the development of space subjects in VNIITransmash. In: Proceedings of Scientific XXIII Conference on Astronautics. Moscow: IIET RAS, 1999 (in Russian)
17 Huntress   W T, Marov  M Ya. Soviet Robots in the Solar System. Technologies and Discoveries. London: Springer, 2011, 188–206
18 Kemurdjian  A L. 30 Years of Lunokhod. A. L. Kemurdjian—Scientist, Citizen, Man. Moscow: Bauman Moscow State Technical University, 2013, 63–77 (in Russian)
19 Bolkhovitinov I S, Gromov V V, Kemurdjian A L, . Self-propelled automatic chassis of the Lunokhod-1 and Lunokhod-2. In: Potemkin E K, ed. VNIITransmash—Space Exploration. St. Petersburg: VNIITransmash, 2003, 3–31 (in Russian)
20 Malenkov  M I. Strokes of A. L. Kemurdjian creative portrait. Flight, 2002, (1): 44–49 (in Russian)
21 Kupriyanov V N, Malenkov M I. The role of enterprises and universities of Leningrad in the establishment and successful operation of Lunokhod-1 on the Moon. In: Abstracts of International Scientific Practical Conference “Features of the Russian Space Industry and Prospects of Its fusion Integration into the System of International Economic Ties”. St. Petersburg: BGTU “Voenmech”, 2007, 154–156 (in Russian)
22 Malenkov  M I. Development of Lunukhod-1 is a scientific and technical breaktrough of XX Century. Bulletin NPO of S. A. Lavochkin, 2011, 1: 13–21 (in Russian) 
23 Malenkov  M I. Activities of A. L. Kemurdjian to create a national school of design and development of planet-rovers locomotion systems. In: Proceedings of the 15th Scientific and Technical Conference “Extreme Robotics”. St. Petersburg, 2004 (in Russian)
24 Malenkov  M I. 90 years since the birth of A. L. Kemurdjian: remembering the chief designer of the self-propelled chassis “Lunokhod-1”. Bulletin NPO of S. A. Lavochkin, 2013, (1): 52–55 (in Russian)
25 Rosen I I. Lunokhod-1 and S. P. Korolev, 1964. In: Abstracts of International Scientific Practical Conference “Features of the Russian Space Industry and Prospects of Its fusion Integration into the System of International Economic Ties”. St. Petersburg: BGTU Voenmech, 2007, 59–162 (in Russian)
26 Ivanovsky  O G. With babakin. In: Karvovskiy G G, ed. Six Years and All Life of Designer G. N. Babakin. Khimki, Moscow Region: BLOCK-Inform-Express, 2004, 112–228 (in Russian)
27 Kemurdjian  A L, Malenkov  M I. We have learned a lot from him. In: Karvovskiy G G, ed. Six years and all life of designer G. N. Babakin. Khimki, Moscow Region: BLOCK-Inform-Express, 2004, 313–320 (in Russian)
28 Dovgan  V G. Father-commander of the moon rover crew. In: Karvovskiy G G, ed. Six years and all life of designer G. N. Babakin. Khimki, Moscow Region: BLOCK-Inform-Express, 2004, 321–340 (in Russian)
29 Malenkov  M I. A graduate of Polytechnic University Felix Shpak—VNIITransmash legend. In: Proceedings of Conference on “The History of St. Petersburg GPU in the Context of History of Domestic and World Science and Technology”. St. Petersburg: Polytechnic University, 2009, 46–55 (in Russian)
30 Dovgan  V G. The first cross-road on the Moon. Bulletin of GLONASS, 2012, 4(9): 14–20 (in Russian)
31 Malenkov  M I. Creative contribution of graduates of the St. Petersburg State Polytechnic University in the creation of a self-propelled chassis automatic Lunokhod-1 and its operation on the Moon. In: Proceedings of the Conference on “History of Polytecnic University in the Context of the History of National and World Science and Education”. St. Peterburg: Polytecnic University, 2009, 272–296 (in Russian)
32 Dovgan  V G. Moon Odyssey of National Astronautics. From “Dreams” to the Lunar Rover. Rostov-on-Don: Southern Federal University, 2015, 169–218 (in Russian)
33 Gladkikh  B. My Track. St. Petersburg: Regional Publishing House, 2013, 64–100 (in Russian)
34 Chaikin  A. The other Moon landings. A Soviet triumph in the shadow of Apollo. Air and space, 2004, 18(6): 30–37
35 Kupriyanov  V N. First steps of “Lunokhod”. Space News, 2001, 1(216): 68–69 (in Russian)
36 Potemkin  E K. VNIITransmash. Leaders, Scientists and Experts. Encyclopedia, Volume 1. St. Petersburg: Peter Fund, 1999, 9–17 (in Russian)
37 Malenkov  M I. 40 years passed, and no one has surpassed the results of the “Lunokhod-1”. Space News, 2011, 1: 56–59 (in Russian)
38 Dyachenko  V A, Malenkov  M I, Sidorov  D V. Research design projects of planetary interiors and space stations. In: Proceedings of Conference on “Modern Engineering”. St. Petersburg: SpbPU, 2014, 501–512 (in Russian)
39 Malenkov  M I, Sidorov  V A. Information technology in design projects of planetary rovers. In: Proceedings of the International Conference “Regional Informatics” RI-2014. St. Petersburg, 2014, 507–508 (in Russian)
Related articles from Frontiers Journals
[1] Girish Sudhir MODAK,Manmohan Manikrao BHOOMKAR. Innovative stair climber using associated wheels[J]. Front. Mech. Eng., 2016, 11(3): 299-310.
[2] Cesare ROSSI,Thomas G. CHONDROS,Kypros F. MILIDONIS,Sergio SAVINO,Flavio RUSSO. Ancient road transport devices: Developments from the Bronze Age to the Roman Empire[J]. Front. Mech. Eng., 2016, 11(1): 12-25.
[3] Yulun CHI, Haolin LI. Simulation and analysis of grinding wheel based on Gaussian mixture model[J]. Front Mech Eng, 2012, 7(4): 427-432.
[4] Guisheng ZHAI, Masayuki NAKA, Tomoaki KOBAYASHI, Joe IMAE. Towards neutral steer and sideslip reduction for four-wheeled electric vehicles[J]. Front Mech Eng, 2012, 7(1): 16-22.
[5] Yongjie LU, Shaopu YANG, Shaohua LI. Heavy vehicle dynamics with balanced suspension based on enveloping tire model[J]. Front Mech Eng Chin, 2010, 5(4): 476-482.
[6] Mengyao PAN, Guixiong LIU, Xiaobin HONG, Tusheng LIN, . WEIS wheel speed real-time measuring method for VOSM[J]. Front. Mech. Eng., 2010, 5(3): 322-327.
[7] Wade A. SMITH, Nong ZHANG, . Recent developments in passive interconnected vehicle suspension[J]. Front. Mech. Eng., 2010, 5(1): 1-18.
[8] Taijiang PENG, Zhigang YANG, Junwu KAN, Fengjun TIAN, Xiaohong CHE, . Performance investigation on ultrasonic levitation axial bearing for flywheel storage system[J]. Front. Mech. Eng., 2009, 4(4): 415-419.
[9] BAI Yue, GAO Qingjia, LI Haiwen, WU Yihui, XUAN Ming. Design of composite flywheel rotor[J]. Front. Mech. Eng., 2008, 3(3): 288-292.
[10] FENG Jinzhi, LI Jun, Goodall R. M.. Integrated control strategies for railway vehicles with independently-driven wheel motors[J]. Front. Mech. Eng., 2008, 3(3): 239-250.
[11] HUO Fengwei, JIN Zhuji, KANG Renke, GUO Dongming, YANG Chun. Recognition of diamond grains on surface of fine diamond grinding wheel[J]. Front. Mech. Eng., 2008, 3(3): 325-331.
[12] ZHANG Hongxia, CHEN Wuyi, CHEN Zhitong. Grindability of high-temperature alloy with ceramic alumina wheels[J]. Front. Mech. Eng., 2008, 3(2): 139-145.
[13] CHEN Shi‘an, HE Ren, LU Senlin. Analysis and experiment on structure parameters for an energy reclaiming suspension[J]. Front. Mech. Eng., 2008, 3(2): 200-204.
[14] DONG Mingming, HUANG Hua, GU Lian. Design of damping valve for vehicle hydro pneumatic suspension[J]. Front. Mech. Eng., 2008, 3(1): 97-100.
[15] FENG Jinzhi, ZHENG Songlin, YU Fan. Bandwidth-limited active suspension controller for an off-road vehicle based on co-simulation technology[J]. Front. Mech. Eng., 2008, 3(1): 111-117.
Full text



  Shared   0