Please wait a minute...

Frontiers of Mechanical Engineering

Front Mech Eng    2013, Vol. 8 Issue (2) : 150-159     https://doi.org/10.1007/s11465-013-0266-6
RESEARCH ARTICLE
Transient analysis of thermoelastic contact problem of disk brakes
Ali BELHOCINE(), Mostefa BOUCHETARA
Department of Mechanical Engineering, University of Sciences and Technology of Oran, L.P 1505 El-Mnaouer, 31000 Oran, Algeria
Download: PDF(1223 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The main purpose of this study is to analyze the thermomechanical behavior of the dry contact between the brake disk and pads during the braking phase. The simulation strategy is based on computer code ANSYS11. The modeling of transient temperature in the disk is actually used to identify the factor of geometric design of the disk to install the ventilation system in vehicles. The thermal-structural analysis is then used with coupling to determine the deformation established and the Von Mises stresses in the disk, the contact pressure distribution in pads. The results are satisfactory compared to those found in the literature.

Keywords brake disks      heat flux      heat-transfer coefficient      Von Mises stress      contact pressure     
Corresponding Author(s): BELHOCINE Ali,Email:al.belhocine@yahoo.fr   
Issue Date: 05 June 2013
 Cite this article:   
Ali BELHOCINE,Mostefa BOUCHETARA. Transient analysis of thermoelastic contact problem of disk brakes[J]. Front Mech Eng, 2013, 8(2): 150-159.
 URL:  
http://journal.hep.com.cn/fme/EN/10.1007/s11465-013-0266-6
http://journal.hep.com.cn/fme/EN/Y2013/V8/I2/150
Fig.1  Application of flux
ItemValues
Inner disk diameter (mm)66
Outer disk diameter (mm)262
Disk thickness (TH) (mm)29
Disk height (H) (mm)51
Vehicle mass m (kg)1385
Initial speed vo (km·h-1)28
Deceleration a(m·s-2)8
Effective rotor radius Rrotor (mm)100.5
Rate distribution of the braking forces ? (%)20
Factor of charge distribution of the disk ?p0.5
Surface disk swept by the pad BoldItalicd (mm2)35993
Tab.1  Parameters of automotive brake application
PadDisk
Material properties
Thermal conductivity, k (w·m-1 ·°C-1)557
Density, ρ(kg·m-3)14007250
Specific heat, c (J·kg-1· °C-1)1000460
Poisson’s ratio, v0.250.28
Thermal expansion, α (10-6· °C-1)1010.85
Elastic modulus, E (GPa)1138
Coefficient of friction, μ0.20.2
Operation Conditions
Angular velocity, ω (rd·s-1)157.89
Hydraulic pressure, P (MPa)1
Tab.2  Thermoelastic properties used in simulation
Fig.2  Definition of surfaces of the ventilated disk
Fig.3  Irregular mesh in the wall
Fig.4  Brake disk CFD model
Fig.5  Distribution of heat-transfer coefficient on a ventilated disk in the stationary case (FG 15)
Fig.6  Variation of heat-transfer coefficient () of various surfaces for a full disk in the nonstationary case (FG 15)
Fig.7  Variation of heat-transfer coefficient () of various surfaces for a ventilated disk in transient case (FG 15)
Fig.8  Meshing of the disk
Fig.9  Temperature distribution of a full disk of cast iron (FG 15)
Fig.10  Temperature distribution of a ventilated disk of cast iron (FG 15)
Fig.11  Boundary conditions and loading imposed on the disk-pads
Fig.12  Refined mesh of the model
Fig.13  Total distortion distribution
Fig.14  Von Mises stress distribution
Fig.15  Contact pressure distribution in the inner pad
1 Milenkovi? P D, Jovanovi? S J, Jankovi? A S, Milovanovi? M D, Vito?evi? N D, ?or?evi? M V, Rai?evi? M M. The influence of brake pads thermal conductivity on passenger car brake system efficiency. Thermal Science , 2010, 14: S221–S230
2 Belghazi H. Analytical solution of unsteady heat conduction in a two-layered material in imperfect contact subjected to a moving heat source. Ph.D. Thesis, University of Limoges , 2010
3 Nakatsuji T, Okubo K, Fujii T, Sasada M, Noguchi Y. Study on crack initiation at small holes of one-piece brake discs. SAE technical paper 2002–01–0926. Society of Automotive Engineers , 2002
4 Valvano T, Lee K. An analytical method to predict thermal distortion of a brake rotor. SAE technical paper 2000–01–0445. Society of Automotive Engineers , 2000
5 Hudson M D, Ruhl R L. Ventilated brake rotor air flow investigation. SAE technical paper 1997–01–033. Society of Automotive Engineers ,1997
6 Denape J, Laraqi N. Aspect thermique du frottement: mise en évidence experimentale et éléments de modélisation. Mécanique et Industries , 2000, 1: 563–579
7 Hamraoui M. Thermal behaviour of rollers during the rolling process. Applied Thermal Engineering , 2009, 29(11–12): 2386–2390
doi: 10.1016/j.applthermaleng.2008.12.013
8 Hamraoui M, Zouaoui Z. Modelling of heat transfer between two rollers in dry friction. International Journal of Thermal Sciences , 2009, 48(6): 1243–1246
doi: 10.1016/j.ijthermalsci.2008.10.005
9 Laraqi N. Velocity and relative contact size effect on the thermal constriction resistance in sliding solids. American Society of Mechanical Engineers (ASME) Journal of Heat Transfer , 1997, 119(1): 173–177
doi: 10.1115/1.2824083
10 Yap?c? H, Gen? M S. ?z?s?k G. Transient temperature and thermal stress distributions in a hollow disk subjected to a moving uniform heat source. Journal of Thermal Stresses , 2008, 31: 476–493
doi: 10.1080/01495730801912652
11 Laraqi N, Alilat N, de Maria J M G, Ba?ri A. Temperature and division of heat in a pin-on-disc frictional device—exact analytical solution. Wear , 2009, 266(7–8): 765–770
doi: 10.1016/j.wear.2008.08.016
12 Bauzin J G, Laraqi N. Simultaneous estimation of frictional heat flux and two thermal contact parameters for sliding solids. Numerical Heat Transfer Part A , 2004, 45(4): 313–328
doi: 10.1080/10407780490250355
13 Ba?ri A, de Maria J M G, Laraqi N. Effect of thickness and thermal properties of film on the thermal behavior of moving rough interfaces. European Physical Journal Applied Physics , 2004, 26(1): 29–34
doi: 10.1051/epjap:2004022
14 Mijuca D M, ?iberna A M, Medjo B I. A new multifield finite element method in steady state heat analysis. Thermal Science , 2005, 9(1): 111–130
doi: 10.2298/TSCI0501111M
15 Zhang L, Yang Q, Weichert D, Tan N. Simulation and analysis of thermal fatigue based on imperfection model of brake discs. Proceeding in Applied Mathematics and Mechanics (PAMM) , 2009, 9: 533–534
16 Fiche U I C. 541–3: FREIN – Frein à disques et garnitures de frein à disques, 4th ed, 1993
17 Saumweber E. Temperaturberechnung in Bremsscheiben fürein beliebiges. Fahrprogramm, Leichtbau der Verkehrsfahrzeuge, Heft 3, Augsburg , 1969
18 Cruceanu C. Frane pentru feroviare (Brakes for railway vehicles). MATRIXROM, Bucure?ti , 2007. 388 pages
19 Reimpel J. Technologie de freinage. VogelVerlag, Würzburg, 1998
20 Gotowicki P F, Nigrelli V, Mariotti G V. Numerical and experimental analysis of a pegs-wing ventilated disk brake rotor, with pads and cylinders. Paper EAEC05YUAS04–P5, 10th EAEC European Automotive Congress, June , 2005
21 Yu H, Li S, Liu Y, Chen C. Study on temperature distribution due to freezing and thawing at the Fengman concrete gravity dam.Thermal Science , 2011, 15(suppl 1): s27–s32
doi: 10.2298/TSCI11S1027Y
22 Sergerlind L J. Applied Finite Element Analysis. New York: John Wiley and Sons, 1984
23 Hinton E, Owen D R J. An Introduction to Finite Element Computations. UK: Pineridge Press Limited, 1981
24 Versteeg H K, Malalasekera W. An introduction to computational fluid mechanics. The finite volume method . Harlow: Longman Scientific & Technical Publishers, 2007
25 ANSYS v.11 User’s Manual Guide. Houston, USA: ANSYS, Inc., 1996
26 Nouby M, Srinivasan K. Parametric studies of disc brake squeal using Finite element approach. Journal Mekanikal , 2009, 29: 52– 66
Viewed
Full text


Abstract

Cited

  Shared   0
  Discussed