Please wait a minute...

Frontiers of Medicine

Front. Med.    2018, Vol. 12 Issue (3) : 239-248     https://doi.org/10.1007/s11684-018-0617-0
REVIEW |
Gut microbiota and its implications in small bowel transplantation
Chenyang Wang, Qiurong Li(), Jieshou Li()
Research Institute of General Surgery, Jinling Hospital, Medical School, Nanjing University, Nanjing 210002, China
Download: PDF(340 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The gut microbiota is mainly composed of a diverse population of commensal bacterial species and plays a pivotal role in the maintenance of intestinal homeostasis, immune modulation and metabolism. The influence of the gut microbiota on solid organ transplantation has recently been recognized. In fact, several studies indicated that acute and chronic allograft rejection in small bowel transplantation (SBT) is closely associated with the alterations in microbial patterns in the gut. In this review, we focused on the recent findings regarding alterations in the microbiota following SBT and the potential roles of these alterations in the development of acute and chronic allograft rejection. We also reviewed important advances with respect to the interplays between the microbiota and host immune systems in SBT. Furthermore, we explored the potential of the gut microbiota as a microbial marker and/or therapeutic target for the predication and intervention of allograft rejection and chronic dysfunction. Given that current research on the gut microbiota has become increasingly sophisticated and comprehensive, large cohort studies employing metagenomic analysis and multivariate linkage should be designed for the characterization of host–microbe interaction and causality between microbiota alterations and clinical outcomes in SBT. The findings are expected to provide valuable insights into the role of gut microbiota in the development of allograft rejection and other transplant-related complications and introduce novel therapeutic targets and treatment approaches in clinical practice.

Keywords gut microbiota      small bowel transplantation      acute rejection      chronic rejection      mucosal immunity      biomarker      microbiota-targeted therapy     
Corresponding Authors: Qiurong Li,Jieshou Li   
Just Accepted Date: 27 December 2017   Online First Date: 15 March 2018    Issue Date: 04 May 2018
 Cite this article:   
Chenyang Wang,Qiurong Li,Jieshou Li. Gut microbiota and its implications in small bowel transplantation[J]. Front. Med., 2018, 12(3): 239-248.
 URL:  
http://journal.hep.com.cn/fmd/EN/10.1007/s11684-018-0617-0
http://journal.hep.com.cn/fmd/EN/Y2018/V12/I3/239
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chenyang Wang
Qiurong Li
Jieshou Li
Fig.1  Alterations of the gut microbiota in actively rejecting patients with small bowel transplant (SBT). Figure shows the microbiota composition of the ileal effluents from the three patient groups, i.e., nonrejection (NR), prerejection (PR) or active rejection (AR). The ileal microbiota in PR seems to shift toward severe perturbations presenting in AR recipients, indicating that emergence of allograft rejection is closely associated with the changes of the microbiota.
Fig.2  Characterization of the ileal microbiota in intestinal transplanted rats with CR. Microbiota is determined by sequencing the V3 region of 16S rRNA genes recovered from the ileal contents of CR rats and syngeneic controls (Con). The intestinal microbial signatures in CR rats that distinguished from controls are identified using the linear discriminant analysis (LDA) effect size (LEfSe).
Fig.3  Relationship between gut microbiota and mucosal immunity in the development of allograft rejection. In small bowel transplant, the surgical procedure, immunosuppressive treatment and antibiotic use can induce microbiota alterations (dysbiosis), which can cause immunological disorder in intestinal mucosa. Activation of innate and adaptive immunity may amplify graft inflammation and lead to uncontrolled response of mucosal T cells against allo/autoantigens and microbial antigens. Dysregulated immune response accentuates microbiota dysbiosis.
Fig.4  Role of gut microbiota in the mechanistic demonstration of transplant-related pathophysiologies and its potential application. Evidence has demonstrated the association of the microbiota dysbiosis with allograft rejection and other complications in small bowel transplant (SBT). Further studies in a larger cohort of SBT recipients are needed for the identification of microbial markers and validation of the efficacy of microbiota-targeted therapeutic intervention against transplant-associated complications.
1 Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science 2005; 308(5728): 1635–1638
https://doi.org/10.1126/science.1110591 pmid: 15831718
2 Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI. Evolution of mammals and their gut microbes. Science 2008; 320(5883): 1647–1651
https://doi.org/10.1126/science.1155725 pmid: 18497261
3 Cox MJ, Cookson WO, Moffatt MF. Sequencing the human microbiome in health and disease. Hum Mol Genet 2013; 22(R1): R88–R94
https://doi.org/10.1093/hmg/ddt398 pmid: 23943792
4 Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013; 341(6150): 1241214
https://doi.org/10.1126/science.1241214 pmid: 24009397
5 Lepage P, Häsler R, Spehlmann ME, Rehman A, Zvirbliene A, Begun A, Ott S, Kupcinskas L, Doré J, Raedler A, Schreiber S. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 2011; 141(1): 227–236
https://doi.org/10.1053/j.gastro.2011.04.011 pmid: 21621540
6 Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490(7418): 55–60
https://doi.org/10.1038/nature11450 pmid: 23023125
7 Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444(7122): 1022–1023
https://doi.org/10.1038/4441022a pmid: 17183309
8 Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 2010; 328(5975): 228–231
https://doi.org/10.1126/science.1179721 pmid: 20203013
9 Fishbein TM. Intestinal transplantation. N Engl J Med 2009; 361(10): 998–1008
https://doi.org/10.1056/NEJMra0804605 pmid: 19726774
10 Garg M, Jones RM, Vaughan RB, Testro AG. Intestinal transplantation: current status and future directions. J Gastroenterol Hepatol 2011; 26(8): 1221–1228
https://doi.org/10.1111/j.1440-1746.2011.06783.x pmid: 21595748
11 Abu-Elmagd KM, Kosmach-Park B, Costa G, Zenati M, Martin L, Koritsky DA, Emerling M, Murase N, Bond GJ, Soltys K, Sogawa H, Lunz J, Al Samman M, Shaefer N, Sindhi R, Mazariegos GV. Long-term survival, nutritional autonomy, and quality of life after intestinal and multivisceral transplantation. Ann Surg 2012; 256(3): 494–508
https://doi.org/10.1097/SLA.0b013e318265f310 pmid: 22868368
12 van der Hilst CS, Ijtsma AJ, Bottema JT, van Hoek B, Dubbeld J, Metselaar HJ, Kazemier G, van den Berg AP, Porte RJ, Slooff MJ. The price of donation after cardiac death in liver transplantation: a prospective cost-effectiveness study. Transpl Int 2013; 26(4): 411–418
https://doi.org/10.1111/tri.12059 pmid: 23398215
13 Cotter PD. Small intestine and microbiota. Curr Opin Gastroenterol 2011; 27(2): 99–105
https://doi.org/10.1097/MOG.0b013e328341dc67 pmid: 21102323
14 Andersen DA, Horslen S. An analysis of the long-term complications of intestine transplant recipients. Prog Transplant 2004; 14(4): 277–282
https://doi.org/10.1177/152692480401400402 pmid: 15663012
15 Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 2012; 3(1): 4–14
https://doi.org/10.4161/gmic.19320 pmid: 22356853
16 Hartman AL, Lough DM, Barupal DK, Fiehn O, Fishbein T, Zasloff M, Eisen JA. Human gut microbiome adopts an alternative state following small bowel transplantation. Proc Natl Acad Sci USA 2009; 106(40): 17187–17192
https://doi.org/10.1073/pnas.0904847106 pmid: 19805153
17 Fishbein TM, Florman S, Gondolesi G, Schiano T, LeLeiko N, Tschernia A, Kaufman S. Intestinal transplantation before and after the introduction of sirolimus. Transplantation 2002; 73(10): 1538–1542
https://doi.org/10.1097/00007890-200205270-00004 pmid: 12042637
18 Fishbein TM, Kaufman SS, Florman SS, Gondolesi GE, Schiano T, Kim-Schluger L, Magid M, Harpaz N, Tschernia A, Leibowitz A, LeLeiko NS. Isolated intestinal transplantation: proof of clinical efficacy. Transplantation 2003; 76(4): 636–640
https://doi.org/10.1097/01.TP.0000083042.03188.6C pmid: 12973101
19 Sudan DL. Treatment of intestinal failure: intestinal transplantation. Nat Clin Pract Gastroenterol Hepatol 2007; 4(9): 503–510
https://doi.org/10.1038/ncpgasthep0901 pmid: 17768395
20 Ishii T, Mazariegos GV, Bueno J, Ohwada S, Reyes J. Exfoliative rejection after intestinal transplantation in children. Pediatr Transplant 2003; 7(3): 185–191
https://doi.org/10.1034/j.1399-3046.2003.00063.x pmid: 12756042
21 Guaraldi G, Cocchi S, Codeluppi M, Di Benedetto F, De Ruvo N, Masetti M, Venturelli C, Pecorari M, Pinna AD, Esposito R. Outcome, incidence, and timing of infectious complications in small bowel and multivisceral organ transplantation patients. Transplantation 2005; 80(12): 1742–1748
https://doi.org/10.1097/01.tp.0000185622.91708.57 pmid: 16378070
22 Chen HX, Yin L, Peng CH, Zhou GW, Shen BY, Chen H, Shen C, Li HW. Abdominal cluster transplantation and management of perioperative hemodynamic changes. Hepatobiliary Pancreat Dis Int 2006; 5(1): 28–33
pmid: 16481278
23 Fricke WF, Maddox C, Song Y, Bromberg JS. Human microbiota characterization in the course of renal transplantation. Am J Transplant 2014; 14(2): 416–427
https://doi.org/10.1111/ajt.12588 pmid: 24373208
24 Oh PL, Martínez I, Sun Y, Walter J, Peterson DA, Mercer DF. Characterization of the ileal microbiota in rejecting and nonrejecting recipients of small bowel transplants. Am J Transplant 2012; 12(3): 753–762
https://doi.org/10.1111/j.1600-6143.2011.03860.x pmid: 22152019
25 Krams SM, Wang M, Castillo RO, Ito T, Phillips L, Higgins J, Kambham N, Esquivel CO, Martinez OM. Toll-like receptor 4 contributes to small intestine allograft rejection. Transplantation 2010; 90(12): 1272–1277
https://doi.org/10.1097/TP.0b013e3181fdda0d pmid: 21197709
26 Orloff SL, Yin Q, Corless CL, Loomis CB, Rabkin JM, Wagner CR. A rat small bowel transplant model of chronic rejection: histopathologic characteristics. Transplantation 1999; 68(6): 766–779
https://doi.org/10.1097/00007890-199909270-00008 pmid: 10515376
27 Li Q, Wang C, Zhang Q, Tang C, Li N, Li J. The reduction of allograft arteriosclerosis in intestinal transplant is associated with sphingosine kinase 1/sphingosine-1-phosphate signaling after fish oil treatment. Transplantation 2012; 93(10): 989–996
https://doi.org/10.1097/TP.0b013e31824d709d pmid: 22466786
28 Joosten SA, van Kooten C, Paul LC. Pathogenesis of chronic allograft rejection. Transpl Int 2003; 16(3): 137–145
https://doi.org/10.1111/j.1432-2277.2003.tb00277.x pmid: 12664207
29 Chen Y, Li X, Tian L, Lui VCH, Dallman MJ, Lamb JR, Tam PKH. Inhibition of sonic hedgehog signaling reduces chronic rejection and prolongs allograft survival in a rat orthotopic small bowel transplantation model. Transplantation 2007; 83(10): 1351–1357
https://doi.org/10.1097/01.tp.0000262568.73590.81 pmid: 17519786
30 Bromberg JS, Fricke WF, Brinkman CC, Simon T, Mongodin EF. Microbiota—implications for immunity and transplantation. Nat Rev Nephrol 2015; 11(6): 342–353
https://doi.org/10.1038/nrneph.2015.70 pmid: 25963591
31 Li Q, Zhang Q, Wang C, Tang C, Zhang Y, Li N, Li J. Fish oil enhances recovery of intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplant. PLoS One 2011; 6(6): e20460
https://doi.org/10.1371/journal.pone.0020460 pmid: 21698145
32 Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012; 489(7415): 231–241
https://doi.org/10.1038/nature11551 pmid: 22972296
33 Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014; 157(1): 121–141
https://doi.org/10.1016/j.cell.2014.03.011 pmid: 24679531
34 Surana NK, Kasper DL. Deciphering the tête-à-tête between the microbiota and the immune system. J Clin Invest 2014; 124(10): 4197–4203
pmid: 25036709
35 Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486(7402): 207–214
https://doi.org/10.1038/nature11234 pmid: 22699609
36 Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 2014; 146(6): 1489–1499
https://doi.org/10.1053/j.gastro.2014.02.009 pmid: 24560869
37 Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, Liu C, West ML, Singer NV, Equinda MJ, Gobourne A, Lipuma L, Young LF, Smith OM, Ghosh A, Hanash AM, Goldberg JD, Aoyama K, Blazar BR, Pamer EG, van den Brink MR. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med 2012; 209(5): 903–911
https://doi.org/10.1084/jem.20112408 pmid: 22547653
38 Taur Y, Jenq RR, Perales MA, Littmann ER, Morjaria S, Ling L, No D, Gobourne A, Viale A, Dahi PB, Ponce DM, Barker JN, Giralt S, van den Brink M, Pamer EG. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood 2014; 124(7): 1174–1182
https://doi.org/10.1182/blood-2014-02-554725 pmid: 24939656
39 Weber D, Oefner PJ, Hiergeist A, Koestler J, Gessner A, Weber M, Hahn J, Wolff D, Stämmler F, Spang R, Herr W, Dettmer K, Holler E. Low urinary indoxyl sulfate levels early after transplantation reflect a disrupted microbiome and are associated with poor outcome. Blood 2015; 126(14): 1723–1728
https://doi.org/10.1182/blood-2015-04-638858 pmid: 26209659
40 Shono Y, Docampo MD, Peled JU, Perobelli SM, Velardi E, Tsai JJ, Slingerland AE, Smith OM, Young LF, Gupta J, Lieberman SR, Jay HV, Ahr KF, Porosnicu Rodriguez KA, Xu K, Calarfiore M, Poeck H, Caballero S, Devlin SM, Rapaport F, Dudakov JA, Hanash AM, Gyurkocza B, Murphy GF, Gomes C, Liu C, Moss EL, Falconer SB, Bhatt AS, Taur Y, Pamer EG, van den Brink MRM, Jenq RR. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci Transl Med 2016; 8(339): 339ra71
https://doi.org/10.1126/scitranslmed.aaf2311 pmid: 27194729
41 Staffas A, Burgos da Silva M, van den Brink MR. The intestinal microbiota in allogeneic hematopoietic cell transplant and graft-versus-host disease. Blood 2017; 129(8): 927–933
https://doi.org/10.1182/blood-2016-09-691394 pmid: 27940475
42 Vossen JM, Guiot HF, Lankester AC, Vossen AC, Bredius RG, Wolterbeek R, Bakker HD, Heidt PJ. Complete suppression of the gut microbiome prevents acute graft-versus-host disease following allogeneic bone marrow transplantation. PLoS One 2014; 9(9): e105706
https://doi.org/10.1371/journal.pone.0105706 pmid: 25180821
43 Zeiser R, Socié G, Blazar BR. Pathogenesis of acute graft-versus-host disease: from intestinal microbiota alterations to donor T cell activation. Br J Haematol 2016; 175(2): 191–207
https://doi.org/10.1111/bjh.14295 pmid: 27619472
44 Eriguchi Y, Takashima S, Oka H, Shimoji S, Nakamura K, Uryu H, Shimoda S, Iwasaki H, Shimono N, Ayabe T, Akashi K, Teshima T. Graft-versus-host disease disrupts intestinal microbial ecology by inhibiting Paneth cell production of a-defensins. Blood 2012; 120(1): 223–231 PMID:22535662
https://doi.org/10.1182/blood-2011-12-401166
45 Li Q, Zhang Q, Wang C, Tang C, Zhang Y, Jiang S, Li N, Li J. Influence of alemtuzumab on the intestinal Paneth cells and microflora in macaques. Clin Immunol 2010; 136(3): 375–386
https://doi.org/10.1016/j.clim.2010.05.004 pmid: 20605528
46 Li QR, Wang CY, Tang C, He Q, Li N, Li JS. Reciprocal interaction between intestinal microbiota and mucosal lymphocyte in cynomolgus monkeys after alemtuzumab treatment. Am J Transplant 2013; 13(4): 899–910
https://doi.org/10.1111/ajt.12148 pmid: 23433407
47 Li Q, Wang C, Tang C, He Q, Li J. Lymphocyte depletion after alemtuzumab induction disrupts intestinal fungal microbiota in cynomolgus monkeys. Transplantation 2014; 98(9): 951–959
https://doi.org/10.1097/TP.0000000000000373 pmid: 25136848
48 Sudan D. Small bowel transplantation: current status and new developments in allograftmonitoring. Curr Opin Organ Transplant 2005; 10(2): 124–127
https://doi.org/10.1097/01.mot.0000163040.48954.8c
49 Gondolesi G, Ghirardo S, Raymond K, Hoppenhauer L, Surillo D, Rumbo C, Fishbein T, Sansaricq C, Sauter B. The value of plasma citrulline to predict mucosal injury in intestinal allografts. Am J Transplant 2006; 6(11): 2786–2790
https://doi.org/10.1111/j.1600-6143.2006.01513.x pmid: 16952300
50 Sudan D, Vargas L, Sun Y, Bok L, Dijkstra G, Langnas A. Calprotectin: a novel noninvasive marker for intestinal allograft monitoring. Ann Surg 2007; 246(2): 311–315
https://doi.org/10.1097/SLA.0b013e3180f61af4 pmid: 17667511
51 Zhao L. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol 2013; 11(9): 639–647
https://doi.org/10.1038/nrmicro3089 pmid: 23912213
52 Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T; MetaHIT consortium, Bork P, Wang J, Ehrlich SD, Pedersen O. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500(7464): 541–546
https://doi.org/10.1038/nature12506 pmid: 23985870
53 Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, Le Chatelier E, Yao J, Wu L, Zhou J, Ni S, Liu L, Pons N, Batto JM, Kennedy SP, Leonard P, Yuan C, Ding W, Chen Y, Hu X, Zheng B, Qian G, Xu W, Ehrlich SD, Zheng S, Li L. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014; 513(7516): 59–64
https://doi.org/10.1038/nature13568 pmid: 25079328
54 Ren Z, Jiang J, Lu H, Chen X, He Y, Zhang H, Xie H, Wang W, Zheng S, Zhou L. Intestinal microbial variation may predict early acute rejection after liver transplantation in rats. Transplantation 2014; 98(8): 844–852
https://doi.org/10.1097/TP.0000000000000334 pmid: 25321166
55 van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG, Speelman P, Dijkgraaf MG, Keller JJ. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013; 368(5): 407–415
https://doi.org/10.1056/NEJMoa1205037 pmid: 23323867
56 Ratner M. Microbial cocktails join fecal transplants in IBD treatment trials. Nat Biotechnol 2015; 33(8): 787–788
https://doi.org/10.1038/nbt0815-787 pmid: 26252119
57 Vrieze A,Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, Dallinga-Thie GM, Ackermans MT, Serlie MJ, Oozeer R, Derrien M, Druesne A, Van HylckamaVlieg JE, Bloks VW, Groen AK, Heilig HG, Zoetendal EG, Stroes ES, de Vos WM, Hoekstra JB, Nieuwdorp M. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143(4): 913–916.e7
https://doi.org/DOI: 10.1053/j.gastro.2012.06.031 pmid: 22728514
58 Friedman-Moraco RJ, Mehta AK, Lyon GM, Kraft CS. Fecal microbiota transplantation for refractory Clostridium difficile colitis in solid organ transplant recipients. Am J Transplant 2014; 14(2): 477–480
https://doi.org/10.1111/ajt.12577 pmid: 24433460
59 Kakihana K, Fujioka Y, Suda W, Najima Y, Kuwata G, Sasajima S, Mimura I, Morita H, Sugiyama D, Nishikawa H, Hattori M, Hino Y, Ikegawa S, Yamamoto K, Toya T, Doki N, Koizumi K, Honda K, Ohashi K. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood 2016; 128(16): 2083–2088
https://doi.org/10.1182/blood-2016-05-717652 pmid: 27461930
60 Andermann TM, Rezvani A, Bhatt AS. Microbiota manipulation with prebiotics and probiotics in patients undergoing stem cell transplantation. Curr Hematol Malig Rep 2016; 11(1): 19–28
https://doi.org/10.1007/s11899-016-0302-9 pmid: 26780719
61 Li Q, Wang C, Tang C, He Q, Zhao X, Li N, Li J. Therapeutic modulation and reestablishment of the intestinal microbiota with fecal microbiota transplantation resolves sepsis and diarrhea in a patient. Am J Gastroenterol 2014; 109(11): 1832–1834
https://doi.org/10.1038/ajg.2014.299 pmid: 25373588
Related articles from Frontiers Journals
[1] Xinyao Tian, Zhe Yang, Fangzhou Luo, Shusen Zheng. Gut microbial balance and liver transplantation: alteration, management, and prediction[J]. Front. Med., 2018, 12(2): 123-129.
[2] Shuye Zhang, Fusheng Wang, Zheng Zhang. Current advances in the elimination of hepatitis B in China by 2030[J]. Front. Med., 2017, 11(4): 490-501.
[3] Changlin Cao, Jingxian Gu, Jingyao Zhang. Soluble triggering receptor expressed on myeloid cell-1 (sTREM-1): a potential biomarker for the diagnosis of infectious diseases[J]. Front. Med., 2017, 11(2): 169-177.
[4] Lei Huang,Aman Xu. Detection of digestive malignancies and post-gastrectomy complications via gastrointestinal fluid examination[J]. Front. Med., 2017, 11(1): 20-31.
[5] Yi Cao. Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications[J]. Front. Med., 2015, 9(3): 261-274.
[6] Feng Wang,Chen Chen,Daowen Wang. Circulating microRNAs in cardiovascular diseases: from biomarkers to therapeutic targets[J]. Front. Med., 2014, 8(4): 404-418.
[7] Xiao Liu, Hui Ren, Daizhi Peng. Sepsis biomarkers: an omics perspective[J]. Front Med, 2014, 8(1): 58-67.
[8] Lunxiu Qin. Osteopontin is a promoter for hepatocellular carcinoma metastasis: a summary of 10 years of studies[J]. Front Med, 2014, 8(1): 24-32.
[9] Chuanbao Zhang, Zhaoshi Bao, Wei Zhang, Tao Jiang. Progress on molecular biomarkers and classification of malignant gliomas[J]. Front Med, 2013, 7(2): 150-156.
[10] Qichang Zheng, Shanglong Liu, Zifang Song. Mechanism of arterial remodeling in chronic allograft vasculopathy[J]. Front Med, 2011, 5(3): 248-253.
[11] Chen WANG PhD, MD, Zhen-Guo ZHAI PhD, MD, Ying H. SHEN PhD, MD, Lan ZHAO PhD, MD, . Clinical and genetic risk factors for venous thromboembolism in Chinese population[J]. Front. Med., 2010, 4(1): 29-35.
[12] GAO Yu, TIAN Ying, SHEN Xiaoming. Current techniques for assessing developmental neurotoxicity of pesticides[J]. Front. Med., 2008, 2(4): 337-343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed