Please wait a minute...

Frontiers of Mathematics in China

Front. Math. China    2017, Vol. 12 Issue (4) : 891-906     DOI: 10.1007/s11464-017-0646-z
Involutions in Weyl group of type F4
Jun HU(), Jing ZHANG, Yabo WU
School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
Download: PDF(317 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Let W be the Weyl group of type F4: We explicitly describe a nite set of basic braid I*-transformations and show that any two reduced I*-expressions for a given involution in W can be transformed into each other through a series of basic braid I*-transformations. Our main result extends the earlier work on the Weyl groups of classical types (i.e., An; Bn; and Dn).

Keywords Involutions      reduced I*-expressions      braid I*-transformations     
Corresponding Authors: Jun HU   
Issue Date: 06 July 2017
 Cite this article:   
Jun HU,Jing ZHANG,Yabo WU. Involutions in Weyl group of type F4[J]. Front. Math. China, 2017, 12(4): 891-906.
E-mail this article
E-mail Alert
Articles by authors
Jun HU
Yabo WU
1 CanM B, JoyceM, WyserB. Chains in weak order posets associated to involutions. J Combin Theory Ser A, 2016, 137: 207–225
doi: 10.1016/j.jcta.2015.09.001
2 GeckM, PfeierG. Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras. London Math Soc Monogr New Ser, Vol 446. Oxford: Clarendon Press, 2000
3 HamakerZ, MarbergE, PawlowskiB. Involution words: counting problems and connections to Schubert calculus for symmetric orbit closures. arXiv: 1508.01823
4 HamakerZ, MarbergE, PawlowskiB. Involution words II: braid relations and atomic structures. J Algebraic Combin, 2017, 45: 701–743
doi: 10.1007/s10801-016-0722-6
5 HultmanA. Fixed points of involutive automorphisms of the Bruhat order. Adv Math, 2005, 195(1): 283–296
doi: 10.1016/j.aim.2004.08.011
6 HultmanA. The combinatorics of twisted involutions in Coxeter groups. Trans Amer Math Soc, 2007, 359(6): 2787–2798
doi: 10.1090/S0002-9947-07-04070-6
7 HuJ, ZhangJ. On involutions in symmetric groups and a conjecture of Lusztig. Adv Math, 2016, 287: 1–30
doi: 10.1016/j.aim.2015.10.003
8 HuJ, ZhangJ. On involutions in Weyl groups. J Lie Theory, 2017, 27: 671–706
9 LusztigG. A bar operator for involutions in a Coxeter groups. Bull Inst Math Acad Sin (NS), 2012, 7: 355–404
10 LusztigG. An involution based left ideal in the Hecke algebra. Represent Theory, 2016, 20(8): 172–186
doi: 10.1090/ert/483
11 LusztigG, VoganD. Hecke algebras and involutions in Weyl groups. Bull Inst Math Acad Sin (NS), 2012, 7(3): 323–354
12 MarbergE. Braid relations for involution words in affine Coxeter groups. arXiv: 1703.10437
13 MatsumotoH. Générateurs et relations des groupes de Weyl généralisés. C R Acad Sci Paris, 1964, 258: 3419-3422
14 RichardsonR W, SpringerT A. The Bruhat on symmetric varieties. Geom Dedicata, 1990, 35: 389–436
doi: 10.1007/BF00147354
15 RichardsonR W, SpringerT A. Complements to: The Bruhat on symmetric varieties. Geom Dedicata, 1994, 49: 231–238
doi: 10.1007/BF01610623
Full text