Involutions in Weyl group of type F4

Jun HU , Jing ZHANG , Yabo WU

Front. Math. China ›› 2017, Vol. 12 ›› Issue (4) : 891 -906.

PDF (317KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (4) : 891 -906. DOI: 10.1007/s11464-017-0646-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Involutions in Weyl group of type F4

Author information +
History +
PDF (317KB)

Abstract

Let W be the Weyl group of type F4: We explicitly describe a nite set of basic braid I*-transformations and show that any two reduced I*-expressions for a given involution in W can be transformed into each other through a series of basic braid I*-transformations. Our main result extends the earlier work on the Weyl groups of classical types (i.e., An; Bn; and Dn).

Keywords

Involutions / reduced I*-expressions / braid I*-transformations

Cite this article

Download citation ▾
Jun HU, Jing ZHANG, Yabo WU. Involutions in Weyl group of type F4. Front. Math. China, 2017, 12(4): 891-906 DOI:10.1007/s11464-017-0646-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CanM B, JoyceM, WyserB. Chains in weak order posets associated to involutions. J Combin Theory Ser A, 2016, 137: 207–225

[2]

GeckM, PfeierG. Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras. London Math Soc Monogr New Ser, Vol 446. Oxford: Clarendon Press, 2000

[3]

HamakerZ, MarbergE, PawlowskiB. Involution words: counting problems and connections to Schubert calculus for symmetric orbit closures. arXiv: 1508.01823

[4]

HamakerZ, MarbergE, PawlowskiB. Involution words II: braid relations and atomic structures. J Algebraic Combin, 2017, 45: 701–743

[5]

HultmanA. Fixed points of involutive automorphisms of the Bruhat order. Adv Math, 2005, 195(1): 283–296

[6]

HultmanA. The combinatorics of twisted involutions in Coxeter groups. Trans Amer Math Soc, 2007, 359(6): 2787–2798

[7]

HuJ, ZhangJ. On involutions in symmetric groups and a conjecture of Lusztig. Adv Math, 2016, 287: 1–30

[8]

HuJ, ZhangJ. On involutions in Weyl groups. J Lie Theory, 2017, 27: 671–706

[9]

LusztigG. A bar operator for involutions in a Coxeter groups. Bull Inst Math Acad Sin (NS), 2012, 7: 355–404

[10]

LusztigG. An involution based left ideal in the Hecke algebra. Represent Theory, 2016, 20(8): 172–186

[11]

LusztigG, VoganD. Hecke algebras and involutions in Weyl groups. Bull Inst Math Acad Sin (NS), 2012, 7(3): 323–354

[12]

MarbergE. Braid relations for involution words in affine Coxeter groups. arXiv: 1703.10437

[13]

MatsumotoH. Générateurs et relations des groupes de Weyl généralisés. C R Acad Sci Paris, 1964, 258: 3419-3422

[14]

RichardsonR W, SpringerT A. The Bruhat on symmetric varieties. Geom Dedicata, 1990, 35: 389–436

[15]

RichardsonR W, SpringerT A. Complements to: The Bruhat on symmetric varieties. Geom Dedicata, 1994, 49: 231–238

[16]

WyserB J, YongA. Polynomials for symmetric orbit closures in the flag variety. Transform Groups, 2017, 22(1): 267–290

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (317KB)

1059

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/