Please wait a minute...

Frontiers of Mathematics in China

Front. Math. China    2017, Vol. 12 Issue (4) : 805-819     DOI: 10.1007/s11464-017-0629-0
Asymptotic behavior for log-determinants of several non-Hermitian random matrices
Lei CHEN1,2, Shaochen WANG1,2()
1. School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
2. School of Mathematics, South China University of Technology, Guangzhou 510640, China
Download: PDF(277 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

We study the asymptotic behavior for log-determinants of two unitary but non-Hermitian random matrices: the spherical ensembles A−1B, where A and B are independent complex Ginibre ensembles and the truncation of circular unitary ensembles. The corresponding Berry-Esseen bounds and Cramér type moderate deviations are established. Our method is based on the estimates of corresponding cumulants. Numerical simulations are also presented to illustrate the theoretical results.

Keywords Log-determinants      Berry-Esseen bounds      moderate deviations      spherical ensembles      circular unitary ensembles     
Corresponding Authors: Shaochen WANG   
Issue Date: 06 July 2017
 Cite this article:   
Lei CHEN,Shaochen WANG. Asymptotic behavior for log-determinants of several non-Hermitian random matrices[J]. Front. Math. China, 2017, 12(4): 805-819.
E-mail this article
E-mail Alert
Articles by authors
Shaochen WANG
1 AkemannG, BurdaZ. Universal microscopic correlation functions for products of independent Ginibre matrices. J Phys A, 2012, 45(46): 465201
doi: 10.1088/1751-8113/45/46/465201
2 BaoZ G, PanG M, ZhouW. The logarithmic law of random determinant. Bernoulli, 2015, 21(3): 1600–1628
doi: 10.3150/14-BEJ615
3 CaiT, LiangT Y, ZhouH. Law of log determinant of sample covariance matrix and optimal estimation of differential entropy for high-dimensional Gaussian distributions. J Multivariate Anal, 2015, 137: 161–172
doi: 10.1016/j.jmva.2015.02.003
4 ChenL, GaoF Q, WangS C. Berry-esseen bounds and Cramér type large deviations for eigenvalues of random matrices. Sci China Ser A, 2015, 58(9): 1959–1980
doi: 10.1007/s11425-014-4948-2
5 DelannayR, Le CaërG. Distribution of the determinant of a random real-symmetric matrix from the Gaussian orthogonal ensemble. Phys Rev E, 2000, 62(2): 1526
doi: 10.1103/PhysRevE.62.1526
6 DöringH, EichelsbacherP. Moderate deviations for the determinant of Wigner matrices. In: Limit Theorems in Probability, Statistics and Number Theory. Berlin: Springer, 2013, 253–275
doi: 10.1007/978-3-642-36068-8_12
7 ForresterP J, MaysA. Pfaffian point process for the Gaussian real generalized eigenvalue problem. Probab Theory Related Fields, 2012, 154(1-2): 1–47
doi: 10.1007/s00440-011-0361-8
8 GirkoV L. The central limit theorem for random determinants. Theory Probab Appl, 1980, 24(4): 729–740
doi: 10.1137/1124086
9 GoodmanN R. The distribution of the determinant of a complex Wishart distributed matrix. Ann Math statist, 1963, 34(1): 178–180
doi: 10.1214/aoms/1177704251
10 JiangH, WangS C. Cramér type moderate deviation and Berry-Esseen bound for the Log-determinant of sample covariance matrix. Preprint
11 JiangT F, QiY C. Spectral radii of large non-hermitian random matrices. J Theoret Probab, 2015, 1–39
12 KrishnapurM. From random matrices to random analytic functions. Ann Probab, 2009, 37(1): 314–346
doi: 10.1214/08-AOP404
13 LebedevN N. Special Functions and their Applications. Englewood Cliffs: Prentice-Hall Inc, 1965
14 MezzadriF. How to generate random matrices from the classical compact groups. Notices Amer Math Soc, 2007, 54(5): 592–604
15 NguyenH, VuV. Random matrices: Law of the determinant. Ann Probab, 2014, 42(1): 146–167
doi: 10.1214/12-AOP791
16 SaulisL, StatuleviciusV A. Limit Theorems for Large Deviations. New York: Springer, 1991
doi: 10.1007/978-94-011-3530-6
17 TaoT, VuV. A central limit theorem for the determinant of a Wigner matrix. Adv Math, 2012, 231(1): 74–101
doi: 10.1016/j.aim.2012.05.006
Related articles from Frontiers Journals
[1] Hui JIANG. Large and moderate deviations in testing Ornstein-Uhlenbeck process with linear drift[J]. Front. Math. China, 2016, 11(2): 291-307.
[2] Jun FAN, Fuqing GAO. Deviation inequalities and moderate deviations for estimators of parameters in TAR models[J]. Front Math Chin, 2011, 6(6): 1067-1083.
Full text