Asymptotic behavior for log-determinants of several non-Hermitian rand om matrices

Lei CHEN, Shaochen WANG

PDF(277 KB)
PDF(277 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (4) : 805-819. DOI: 10.1007/s11464-017-0629-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Asymptotic behavior for log-determinants of several non-Hermitian rand om matrices

Author information +
History +

Abstract

We study the asymptotic behavior for log-determinants of two unitary but non-Hermitian random matrices: the spherical ensembles A−1B, where A and B are independent complex Ginibre ensembles and the truncation of circular unitary ensembles. The corresponding Berry-Esseen bounds and Cramér type moderate deviations are established. Our method is based on the estimates of corresponding cumulants. Numerical simulations are also presented to illustrate the theoretical results.

Keywords

Log-determinants / Berry-Esseen bounds / moderate deviations / spherical ensembles / circular unitary ensembles

Cite this article

Download citation ▾
Lei CHEN, Shaochen WANG. Asymptotic behavior for log-determinants of several non-Hermitian random matrices. Front. Math. China, 2017, 12(4): 805‒819 https://doi.org/10.1007/s11464-017-0629-0

References

[1]
AkemannG, BurdaZ. Universal microscopic correlation functions for products of independent Ginibre matrices. J Phys A, 2012, 45(46): 465201
CrossRef Google scholar
[2]
BaoZ G, PanG M, ZhouW. The logarithmic law of random determinant. Bernoulli, 2015, 21(3): 1600–1628
CrossRef Google scholar
[3]
CaiT, LiangT Y, ZhouH. Law of log determinant of sample covariance matrix and optimal estimation of differential entropy for high-dimensional Gaussian distributions. J Multivariate Anal, 2015, 137: 161–172
CrossRef Google scholar
[4]
ChenL, GaoF Q, WangS C. Berry-esseen bounds and Cramér type large deviations for eigenvalues of random matrices. Sci China Ser A, 2015, 58(9): 1959–1980
CrossRef Google scholar
[5]
DelannayR, Le CaërG. Distribution of the determinant of a random real-symmetric matrix from the Gaussian orthogonal ensemble. Phys Rev E, 2000, 62(2): 1526
CrossRef Google scholar
[6]
DöringH, EichelsbacherP. Moderate deviations for the determinant of Wigner matrices. In: Limit Theorems in Probability, Statistics and Number Theory. Berlin: Springer, 2013, 253–275
CrossRef Google scholar
[7]
ForresterP J, MaysA. Pfaffian point process for the Gaussian real generalized eigenvalue problem. Probab Theory Related Fields, 2012, 154(1-2): 1–47
CrossRef Google scholar
[8]
GirkoV L. The central limit theorem for random determinants. Theory Probab Appl, 1980, 24(4): 729–740
CrossRef Google scholar
[9]
GoodmanN R. The distribution of the determinant of a complex Wishart distributed matrix. Ann Math statist, 1963, 34(1): 178–180
CrossRef Google scholar
[10]
JiangH, WangS C. Cramér type moderate deviation and Berry-Esseen bound for the Log-determinant of sample covariance matrix. Preprint
[11]
JiangT F, QiY C. Spectral radii of large non-hermitian random matrices. J Theoret Probab, 2015, 1–39
[12]
KrishnapurM. From random matrices to random analytic functions. Ann Probab, 2009, 37(1): 314–346
CrossRef Google scholar
[13]
LebedevN N. Special Functions and their Applications. Englewood Cliffs: Prentice-Hall Inc, 1965
[14]
MezzadriF. How to generate random matrices from the classical compact groups. Notices Amer Math Soc, 2007, 54(5): 592–604
[15]
NguyenH, VuV. Random matrices: Law of the determinant. Ann Probab, 2014, 42(1): 146–167
CrossRef Google scholar
[16]
SaulisL, StatuleviciusV A. Limit Theorems for Large Deviations. New York: Springer, 1991
CrossRef Google scholar
[17]
TaoT, VuV. A central limit theorem for the determinant of a Wigner matrix. Adv Math, 2012, 231(1): 74–101
CrossRef Google scholar
[18]
ZyczkowskiK. Truncations of random unitary matrices. J Phys A, 2000, 33(10): 2045
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(277 KB)

Accesses

Citations

Detail

Sections
Recommended

/