Please wait a minute...

Frontiers in Energy

Front. Energy    2020, Vol. 14 Issue (3) : 590-606     https://doi.org/10.1007/s11708-020-0809-6
RESEARCH ARTICLE
Thermodynamic and economic analyses of a coal and biomass indirect coupling power generation system
Buqing YE, Rui ZHANG(), Jin CAO, Bingquan SHI, Xun ZHOU, Dong LIU()
MIIT Key Laboratory of Thermal Control of Electronic Equipment, and Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Download: PDF(1638 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The coal and biomass coupling power generation technology is considered as a promising technology for energy conservation and emission reduction. In this paper, a novel coal and biomass indirect coupling system is proposed based on the technology of biomass gasification and co-combustion of coal and gasification gas. For the sake of comparison, a coal and biomass direct coupling system is also introduced based on the technology of co-combustion of coal and biomass. The process of the direct and the indirect coupling system is simulated. The thermodynamic and economic performances of two systems are analyzed and compared. The simulation indicates that the thermodynamic performance of the indirect coupling system is slightly worse, but the economic performance is better than that of the direct coupling system. When the blending ratio of biomass is 20%, the energy and exergy efficiencies of the indirect coupling system are 42.70% and 41.14%, the internal rate of return (IRR) and discounted payback period (DPP) of the system are 25.68% and 8.56 years. The price fluctuation of fuels and products has a great influence on the economic performance of the indirect coupling system. The environmental impact analysis indicates that the indirect coupling system can inhibit the propagation of NOx and reduce the environmental cost.

Keywords biomass      indirect coupling system      process simulation      thermodynamic analysis      economic analysis     
Corresponding Author(s): Rui ZHANG,Dong LIU   
Online First Date: 27 April 2020    Issue Date: 14 September 2020
 Cite this article:   
Buqing YE,Rui ZHANG,Jin CAO, et al. Thermodynamic and economic analyses of a coal and biomass indirect coupling power generation system[J]. Front. Energy, 2020, 14(3): 590-606.
 URL:  
http://journal.hep.com.cn/fie/EN/10.1007/s11708-020-0809-6
http://journal.hep.com.cn/fie/EN/Y2020/V14/I3/590
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Buqing YE
Rui ZHANG
Jin CAO
Bingquan SHI
Xun ZHOU
Dong LIU
Fig.1  Flow diagram of the coal and biomass indirect coupling system.
Fig.2  Flow diagram of the coal and biomass direct coupling system.
Items Yulin bituminous coal Dangtu rice straw
Ultimate analysis
Car/% 67.77 44.43
Har/% 4.15 5.54
Nar/% 1.01 0.80
Sar/% 1.73 0.18
Oar/% 8.09 49.05
Proximate analysis
Mar/% 7.99 9.68
Aar/% 9.26 12.34
Var/% 32.68 62.22
FCar/% 50.07 15.76
Qnet,ar/(MJ·kg−1) 26.43 13.56
Tab.1  Characteristics of Yulin bituminous coal and Dangtu rice straw
Fig.3  Model of fuel conversion unit of the indirect coupling system.
Fig.4  Model of fuel conversion unit of the direct coupling system.
Fig.5  Model of the heat transfer unit.
Fig.6  Model of the steam turbine unit.
Fig.7  Model of the flue gas treatment unit.
Fig.8  Mass and energy balance of system.
Facilities Sr Scale unit Ir /($106) IF b Year
Coal preparation [42] 273 t/h 61.774 1.67 0.65 2008
Biomass preparation [42] 65 t/h 15.067 1.52 0.77 2008
Boiler [43] 600 MW 89.940 1.00 0.70 2011
CFB gasifier [44] 68.8 dry, t/h 42.848 1.69 0.70 2002
Steam turbines and condenser [45] 275 MW 66.700 1.16 0.67 2007
SCR [46] 2234 NO, kg/h 31.810 1.00 0.65 2015
FGD [47] 5731.69 SO2, kg/h 15.948 1.00 0.65 2004
Tab.2  Basic capital investment of facilities
Impact category Pollutant PWR/($?t1)
Global warming CO2 12.70
NOx 4063.49
Acidification SO2 952.38
NOx 566.67
Photochemical ozone formation NOx 603.17
Solid waste Slag 19.05
Tab.3  Monetary environmental value of pollutants
Items Unit Blending ratio of biomass
5% 10% 15% 20%
Input
Coal input t/h 190.00 180.00 170.00 160.00
Coal energy input MW 1394.92 1321.50 1248.08 1174.67
Biomass input t/h 19.49 38.98 58.47 77.96
Biomass energy input MW 73.42 146.83 220.25 293.67
Output
Steam turbines MW 652.70 649.84 647.46 645.56
Crushers MW - 4.07 - 4.07 - 4.08 - 4.08
Primary air fan MW - 1.26 - 1.21 - 1.16 - 1.12
Secondary air fan MW - 1.70 - 1.64 - 1.57 - 1.51
Induced draft fan MW - 1.21 - 1.17 - 1.12 - 1.08
Pumps MW - 10.80 - 10.75 - 10.71 - 10.68
ESP MW - 0.20 - 0.18 - 0.16 - 0.14
FGD MW - 0.05 - 0.05 - 0.05 - 0.04
Summary
Net power production MW 633.41 630.77 628.61 626.91
Energy efficiency % 43.14 42.96 42.81 42.70
Tab.4  Energy balance of the coal and biomass indirect coupling system
Items Unit Blending ratio of biomass
5% 10% 15% 20%
Input
Coal input t/h 190.00 180.00 170.00 160.00
Coal energy input MW 1394.92 1321.50 1248.08 1174.67
Biomass input t/h 19.49 38.98 58.47 77.96
Biomass energy input MW 73.42 146.83 220.25 293.67
Output
Steam turbines MW 665.57 663.18 661.28 659.85
Crushers MW -4.07 -4.07 -4.08 -4.08
Primary air fan MW -1.31 -1.32 -1.32 -1.33
Secondary air fan MW -1.77 -1.78 -1.79 -1.79
Induced draft fan MW -1.26 -1.27 -1.27 -1.28
Pumps MW -11.01 -10.97 -10.94 -10.92
ESP MW -0.22 -0.26 -0.27 -0.28
FGD MW -0.05 -0.05 -0.05 -0.04
Summary
Net power production MW 645.87 643.47 641.56 640.13
Energy efficiency % 43.99 43.82 43.69 43.60
Tab.5  Energy balance of the coal and biomass direct coupling system
Fig.9  Energy efficiencies of the two systems.
Items Unit Blending ratio of biomass
5% 10% 15% 20%
Input
Coal input t/h 190.00 180.00 170.00 160.00
Coal exergy input MW 1427.86 1352.71 1277.56 1202.41
Biomass input t/h 19.49 38.98 58.47 77.96
Biomass exergy input MW 80.31 160.63 240.94 321.26
Exergy loss
CFB gasifier and boiler MW 430.24 435.56 445.97 451.75
Steam turbines MW 391.30 389.59 388.16 387.02
Flue gas treatment unit MW 53.22 57.41 55.76 57.98
Summary
Net power exergy MW 633.41 630.77 628.61 626.91
Exergy efficiency % 42.00 41.68 41.40 41.14
Tab.6  Exergy balance of the coal and biomass indirect coupling system
Items Unit Blending ratio of biomass
5% 10% 15% 20%
Input
Coal input t/h 190.00 180.00 170.00 160.00
Coal exergy input MW 1427.86 1352.71 1277.56 1202.41
Biomass input t/h 19.49 38.98 58.47 77.96
Biomass exergy input MW 80.31 160.63 240.94 321.26
Exergy loss
Boiler MW 374.16 377.13 380.90 384.21
Steam turbines MW 399.02 397.59 396.45 395.59
Flue gas treatment unit MW 89.12 95.15 99.59 103.74
Summary
Net power exergy MW 645.87 643.47 641.56 640.13
Exergy efficiency % 42.82 42.52 42.25 42.01
Tab.7  Exergy balance of the coal and biomass direct coupling system
Fig.10  Exergy efficiencies of the two systems.
Items Value
Prices
Yulin bituminous coal $77.414/t
Dangtu rice straw $36.912/t
Water $0.310/t
Limestone $25.377/t
Liquid ammonia $461.400/t
Electricity $0.056/kWh
Gypsum $9.228/t
Subsidy of the renewable energy power generation $0.035/kWh
Parameters
Plant lifetime [39] 30 a
Facility available days per year 300
O&M [39] 4%
Discount rate [39] 8%
Overall interest rate during construction [51] 9.8%
Construction period 3 a
Tab.8  Prices and basic parameters for economic calculation
Items Unit Blending ratio of biomass
5% 10% 15% 20%
Fuel and material costs
Coal $106/a 125.90 120.33 114.75 109.18
Biomass $106/a 5.18 10.36 15.54 20.72
Water $106/a 3.06 3.04 3.03 3.02
Limestone $106/a 1.19 1.11 1.06 1.00
Liquid ammonia $106/a 6.21 5.42 4.57 3.56
Product sales
Electricity $106/a 255.39 254.33 253.45 252.77
Subsidy $106/a 7.98 15.90 23.76 31.60
Gypsum $106/a 0.74 0.70 0.66 0.63
Capital investment
Coal preparation $106 51.41 49.63 47.82 45.97
Biomass preparation $106 5.71 9.74 13.31 16.61
Boiler $106 92.42 92.38 92.34 92.31
CFB gasifier $106 26.68 43.34 57.57 70.41
Steam turbines $106 95.36 95.08 94.85 94.66
SCR $106 41.18 37.71 33.73 28.89
FGD $106 21.86 21.23 20.59 19.94
FCI $106 334.62 349.12 360.22 368.80
Interest during installation $106 32.79 34.21 35.30 36.14
EPC $106 26.77 27.93 28.82 29.50
Project contingency $106 54.21 56.56 58.36 59.75
TPC $106 415.60 433.61 447.39 458.05
Summary
Fuel and material cost $106/a 144.98 143.69 142.36 140.86
Annual output value $106/a 263.37 270.22 277.22 284.37
Annual profit $106/a 101.77 109.19 116.96 125.19
IRR % 21.10 22.26 23.81 25.68
DPP a 9.34 9.16 8.87 8.56
Tab.9  Economic analysis of the coal and biomass indirect coupling system
Items Unit Blending ratio of biomass
5% 10% 15% 20%
Fuel and material costs
Coal $106/a 125.90 120.33 114.75 109.18
Biomass $106/a 5.18 10.36 15.54 20.72
Water $106/a 3.12 3.11 3.10 3.09
Limestone $106/a 1.19 1.11 1.06 1.00
Liquid ammonia $106/a 7.17 7.40 7.57 7.79
Product sales
Electricity $106/a 260.41 259.45 258.68 258.10
Gypsum $106/a 0.74 0.70 0.66 0.63
Capital investment
Coal preparation $106 51.41 49.63 47.82 45.97
Biomass preparation $106 5.71 9.74 13.31 16.61
Boiler $106 92.47 92.44 92.41 92.38
Steam turbines $106 96.62 96.39 96.20 96.06
SCR $106 45.23 46.11 46.97 47.81
FGD $106 21.86 21.23 20.59 19.94
FCI $106 313.30 315.55 317.31 318.78
Interest during installation $106 30.70 30.92 31.10 31.24
EPC $106 25.06 25.24 25.39 25.50
Project contingency $106 50.75 51.12 51.40 51.64
TPC $106 389.12 391.91 394.10 395.92
Summary
Fuel and material cost $106/a 146.22 146.15 146.05 146.01
Annual output value $106/a 260.41 259.45 258.68 258.10
Annual profit $106/a 98.63 97.62 96.87 96.26
IRR % 22.53 21.80 21.26 20.81
DPP a 9.11 9.25 9.31 9.41
Tab.10  Economic analysis of the coal and biomass direct coupling system
Fig.11  (a) FCI, (b) annual profit, (c) IRR, and (d) DPP of the two systems.
Fig.12  Influence of price fluctuation on ΔIRR.
Impact category Pollutant Unit Blending ratio of biomass
5% 10% 15% 20%
Global warming CO2 $/h 5953.60 5607.22 5277.32 4947.42
NOx $/h 19.33 15.27 11.24 7.24
Acidification SO2 $/h 49.58 52.36 51.01 49.59
NOx $/h 2.70 2.13 1.57 1.01
Photochemical ozone formation NOx $/h 2.87 2.27 1.67 1.07
Solid waste Slag $/h 103.90 102.01 100.10 98.19
Environmental cost $/h 6131.98 5781.25 5442.91 5104.52
Tab.11  Environmental cost of the coal and biomass indirect coupling system
Impact category Pollutant Unit Blending ratio of biomass
5% 10% 15% 20%
Global warming CO2 $/h 5953.62 5607.80 5277.85 4948.04
NOx $/h 24.78 26.14 27.49 28.83
Acidification SO2 $/h 49.54 50.21 50.91 58.74
NOx $/h 3.46 3.64 3.83 4.02
Photochemical ozone formation NOx $/h 3.68 3.88 4.08 4.28
Solid waste Slag $/h 111.65 117.21 122.91 128.56
Environmental cost $/h 6146.73 5808.87 5487.07 5172.47
Tab.12  Environmental cost of the coal and biomass direct coupling system
1 H Lund. Renewable energy strategies for sustainable development. Energy, 2007, 32(6): 912–919
https://doi.org/10.1016/j.energy.2006.10.017
2 N Lior. Energy resources and use: the present situation and possible paths to the future. Energy, 2008, 33(6): 842–857
https://doi.org/10.1016/j.energy.2007.09.009
3 S Shafiee, E Topal. When will fossil fuel reserves be diminished? Energy Policy, 2009, 37(1): 181–189
https://doi.org/10.1016/j.enpol.2008.08.016
4 Y Sun, W Cai, B Chen, X Guo, J Hu, Y Jiao. Economic analysis of fuel collection, storage, and transportation in straw power generation in China. Energy, 2017, 132: 194–203
https://doi.org/10.1016/j.energy.2017.05.077
5 A Bhattacharya, D Manna, B Paul, A Datta. Biomass integrated gasification combined cycle power generation with supplementary biomass firing: energy and exergy based performance analysis. Energy, 2011, 36(5): 2599–2610
https://doi.org/10.1016/j.energy.2011.01.054
6 J X Mao. Co-firing biomass with coal for power generation. Distributed Energy, 2017, 2(5): 47–54 (in Chinese)
7 A A Bhuiyan, A S Blicblau, A K M S Islam, J Naser. A review on thermo-chemical characteristics of coal/biomass co-firing in industrial furnace. Journal of the Energy Institute, 2018, 91(1): 1–18
https://doi.org/10.1016/j.joei.2016.10.006
8 K Laursen, J R Grace. Some implications of co-combustion of biomass and coal in a fluidized bed boiler. Fuel Processing Technology, 2002, 76(2): 77–89
https://doi.org/10.1016/S0378-3820(02)00021-8
9 S Munir, W Nimmo, B M Gibbs. Co-combustion of agricultural residues with coal: turning waste into energy. Energy & Fuels, 2010, 24(3): 2146–2153
https://doi.org/10.1021/ef901503e
10 R Luo, Q Zhou. Combustion kinetic behavior of different ash contents coals co-firing with biomass and the interaction analysis. Journal of Thermal Analysis and Calorimetry, 2017, 128(1): 567–580
https://doi.org/10.1007/s10973-016-5867-y
11 Y Li, H Zhou, N Li, C Tao, Z Liu, K Cen. Experimental study of the combustion and NO emission behaviors during cofiring coal and biomass in O2/N2 and O2/H2O. Asia-Pacific Journal of Chemical Engineering, 2018, 13(3): e2198
https://doi.org/10.1002/apj.2198
12 P K W Likun, H Zhang, R Xiao. Co-firing behaviors and kinetics of different coals and biomass. Journal of Biobased Materials and Bioenergy, 2017, 11(2): 132–141
https://doi.org/10.1166/jbmb.2017.1655
13 K Nowak, K Wojdyga, S Rabczak. Effect of coal and biomass co-combustion on the concentrations of selected gaseous pollutants. In: IOP Conference Series Earth and Environmental Science, 2019, 214(1): 012130
14 X Ma, F Li, M Ma, Y Fang. Fusion characteristics of blended ash from Changzhi coal and biomass. Journal of Fuel Chemistry and Technology, 2018, 46(2): 129–137
https://doi.org/10.1016/S1872-5813(18)30007-0
15 D Wu, Y Wang, Y Wang, S Li, X Wei. Release of alkali metals during co-firing biomass and coal. Renewable Energy, 2016, 96: 91–97
https://doi.org/10.1016/j.renene.2016.04.047
16 G Wang, J Zhang, J Shao, Z Liu, G Zhang, T Xu, J Guo, H Wang, R Xu, H Lin. Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends. Energy Conversion and Management, 2016, 124: 414–426
https://doi.org/10.1016/j.enconman.2016.07.045
17 R Zhang, K Lei, B Q Ye, J Cao, D Liu.. Effects of alkali and alkaline earth metal species on the combustion characteristics of single particles from pine sawdust and bituminous coal. Bioresource Technology, 2018, 268: 278–285
https://doi.org/10.1016/j.biortech.2018.07.145
18 National Energy Administration, Ministry of Ecology and Environment. Notice on the Pilot Project of Coal and Biomass Coupling Power Generation Technical Transformation, 000019705/2017–00325, China. 2017 (in Chinese)
19 L N Wang. Co-firing biomass with coal technology. Environmental Protection and Technology, 2017, 23(6): 61–64 (in Chinese)
20 Z Q Wu, Z H Han, P Xiang, C Qi, Y Wu. Energy and exergy flow analysis of biomass gasification-coal coupling power generation system. Distributed Energy, 2017, 2(6): 8–14 (in Chinese)
21 X Zhang, K Li, W Zhao, Y. HuangSimulation on operation efficiency and pollutant emissions of coal-fired boiler with bio-gas co-firing. . Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(1): 194–202 (in Chinese)
22 Y P Fang, N S Hu, J Wangi, Q Li. Energy loss analysis on 600 MW super critical steam turbine generator unit. Turbine Technology, 2007, 49(1): 8–11 (in Chinese)
23 J P Mathews, V Krishnamoorthy, E Louw, A H N Tchapda, F Castro-Marcano, V Karri, D A Alexis, G D Mitchell. A review of the correlations of coal properties with elemental composition. Fuel Processing Technology, 2014, 121: 104–113
https://doi.org/10.1016/j.fuproc.2014.01.015
24 L G Wang, Y P Yang, C Q Dong, Z P Yang, G Xu. Thermodynamic calculation and simulation of power plant boiler based on Aspen Plus. In: 2011 Asia-Pacific Power and Energy Engineering Conference (APPEEC 2011). Wuhan, China, 2011: 5749132
https://doi.org/10.1109/APPEEC.2011.5749132
25 R Zhang. Thermodynamic and economic analysis of a coal staged conversion utilization polygeneration system. Energy Technology (Weinheim), 2015, 3(6): 646–657
https://doi.org/10.1002/ente.201500009
26 Z Guo, Q Wang, M Fang, Z Luo, K Cen. Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant. Applied Energy, 2014, 113: 1301–1314
https://doi.org/10.1016/j.apenergy.2013.08.086
27 C M Yang. Simulation Operation of 600 MW Supercritical Pressure Thermal Power Unit System. Beijing: China Electric Power Press, 2009 (in Chinese)
28 R Zhang, Y Chen, K Lei, B Ye, J Cao, D Liu. Thermodynamic and economic analyses of a novel coal pyrolysis-gasification-combustion staged conversion utilization polygeneration system. Asia-Pacific Journal of Chemical Engineering, 2018, 13(2): e2171
https://doi.org/10.1002/apj.2171
29 J Kotowicz, S Michalski. Efficiency analysis of a hard-coal-fired supercritical power plant with a four-end high-temperature membrane for air separation. Energy, 2014, 64: 109–119
https://doi.org/10.1016/j.energy.2013.11.006
30 S Djerad, M Crocoll, S Kureti, L Tifouti, W Weisweiler. Effect of oxygen concentration on the NOx reduction with ammonia over V2O5-WO3/TiO2 catalyst. Catalysis Today, 2006, 113(3–4): 208–214
https://doi.org/10.1016/j.cattod.2005.11.067
31 M Nova I, Ciardelli C, Tronconi E, Chatterjee D, Weibel. Unifying redox kinetics for standard and fast NH3-SCR over a V2O5-WO3/TiO2 catalyst. AIChE Journal. 2009, 55(6): 1514–1529
https://doi.org/10.1002/aic.11750
32 S Xiong, X Xiao, Y Liao, H Dang, W Shan, S Yang. Global kinetic study of NO reduction by NH3 over V2O5-WO3/TiO2: relationship between the SCR performance and the key factors. Industrial & Engineering Chemistry Research, 2015, 54(44): 11011–11023
https://doi.org/10.1021/acs.iecr.5b03044
33 F J Gutiérrez Ortiz, F Vidal, P Ollero, L Salvador, V Cortés, A Giménez. Pilot-plant technical assessment of wet flue gas desulfurization using limestone. Industrial & Engineering Chemistry Research, 2006, 45(4): 1466–1477
https://doi.org/10.1021/ie051316o
34 W Lan, G Chen, X Zhu, X Wang, C Liu, B Xu. Biomass gasification-gas turbine combustion for power generation system model based on Aspen Plus. Science of the Total Environment, 2018, 628–629: 1278–1286
https://doi.org/10.1016/j.scitotenv.2018.02.159
35 T A Adams II, P I Barton. Combining coal gasification and natural gas reforming for efficient polygeneration. Fuel Processing Technology, 2011, 92(3): 639–655
https://doi.org/10.1016/j.fuproc.2010.11.023
36 Y Lin, A ten Kate, M Mooijeri, J Delgado. Comparison of activity coefficient models for electrolyte systems. AIChE Journal, 2010, 56(5): 1334–1351
https://doi.org/10.1002/aic.12040
37 G Song, L Chen, J Xiao, L Shen. Exergy evaluation of biomass steam gasification via interconnected fluidized beds. International Journal of Energy Research, 2013, 37(14): 1743–1751
https://doi.org/10.1002/er.2987
38 N Wang, D Wu, Y Yang, Z Yang, P Fu. Exergy evaluation of a 600 MWe supercritical coal-fired power plant considering pollution emissions. Energy Procedia, 2014, 61: 1860–1863
https://doi.org/10.1016/j.egypro.2014.12.229
39 S Li, L Gao, X Zhang, H Lin, H Jin. Evaluation of cost reduction potential for a coal based polygeneration system with CO2 capture. Energy, 2012, 45(1): 101–106
https://doi.org/10.1016/j.energy.2011.11.059
40 Q Yi, B Lu, J Feng, Y Wu, W Li. Evaluation of newly designed polygeneration system with CO2 recycle. Energy & Fuels, 2012, 26(2): 1459–1469
https://doi.org/10.1021/ef201724m
41 D Mignard. Correlating the chemical engineering plant cost index with macro-economic indicators. Chemical Engineering Research & Design, 2014, 92(2): 285–294
https://doi.org/10.1016/j.cherd.2013.07.022
42 J C Meerman, A Ramírez, W C Turkenburg, A P C Faaij. Performance of simulated flexible integrated gasification polygeneration facilities, part b: economic evaluation. Renewable & Sustainable Energy Reviews, 2012, 16(8): 6083–6102
https://doi.org/10.1016/j.rser.2012.06.030
43 Electric Power Planning and Design General Institute. Reference Cost Index for Limited Design of Thermal Power Projects (2011 Level). Beijing: China Electric Power Press, 2012 (in Chinese)
44 C Hamelinck, A Faaij, H Denuil, H Boerrigter. Production of FT transportation fuels from biomass, technical options, process analysis and optimisation, and development potential. Energy, 2004, 29(11): 1743–1771
https://doi.org/10.1016/j.energy.2004.01.002
45 L R Clausen, B Elmegaard, N Houbak. Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass. Energy, 2010, 35(12): 4831–4842
https://doi.org/10.1016/j.energy.2010.09.004
46 A Li. Selection and techno-economic analysis of thermal power flue gas denitrification. Dissertation for the Master’s Degree. Beijing: North China Electric Power University, 2015 (in Chinese)
47 Q Wang. Design and optimizing of wet limestone-gypsum flue gas desulphurization system in power plant. Dissertation for the Master’s Degree. Wuhan: Wuhan University, 2005 (in Chinese)
48 J C Hartman, I C Schafrick. The relevant internal rate of return. Engineering Economist, 2004, 49(2): 139–158
https://doi.org/10.1080/00137910490453419
49 X Wang, A Bierwirth, A Christ, P Whittaker, K Regenauer-Lieb, H T Chua. Application of geothermal absorption air-conditioning system: a case study. Applied Thermal Engineering, 2013, 50(1): 71–80
https://doi.org/10.1016/j.applthermaleng.2012.05.011
50 J Xiao, L Shen, Y Zhang, J Gu. Integrated analysis of energy, economic, and environmental performance of biomethanol from rice straw in China. Industrial & Engineering Chemistry Research, 2009, 48(22): 9999–10007
https://doi.org/10.1021/ie900680d
51 H Lin, H Jin, L Gao, W Han. Techno-economic evaluation of coal-based polygeneration systems of synthetic fuel and power with CO2 recovery. Energy Conversion and Management, 2011, 52(1): 274–283
https://doi.org/10.1016/j.enconman.2010.06.068
52 G Q Wu, H Ni. The influence of biomass gasification coupled coal-fired boiler on combustion safety. Technology Innovation and Application, 2017, (19): 68–70 (in Chinese)
Related articles from Frontiers Journals
[1] Ru Shien TAN, Tuan Amran TUAN ABDULLAH, Anwar JOHARI, Khairuddin MD ISA. Catalytic steam reforming of tar for enhancing hydrogen production from biomass gasification: a review[J]. Front. Energy, 2020, 14(3): 545-569.
[2] Jiahui JIN, Lei WANG, Mingkai FU, Xin LI, Yuanwei LU. Thermodynamic assessment of hydrogen production via solar thermochemical cycle based on MoO2/Mo by methane reduction[J]. Front. Energy, 2020, 14(1): 71-80.
[3] Zhiwei MA, Huashan BAO, Anthony Paul ROSKILLY. Numerical study of a hybrid absorption-compression high temperature heat pump for industrial waste heat recovery[J]. Front. Energy, 2017, 11(4): 503-509.
[4] Nitipong SOPONPONGPIPAT,Dussadeeporn SITTIKUL,Unchana SAE-UENG. Higher heating value prediction of torrefaction char produced from non-woody biomass[J]. Front. Energy, 2015, 9(4): 461-471.
[5] Bayu PRABOWO,Herri SUSANTO,Kentaro UMEKI,Mi YAN,Kunio YOSHIKAWA. Pilot scale autothermal gasification of coconut shell with CO2-O2 mixture[J]. Front. Energy, 2015, 9(3): 362-370.
[6] Ashok Jayawant Rao KECHE, Gaddale AMBA PRASAD RAO. Experimental evaluation of a 35 kVA downdraft gasifier[J]. Front Energ, 2013, 7(3): 300-306.
[7] Muyiwa S. ADARAMOLA, Olarenwaju M. OYEWOLA, Olayinka S. OHUNAKIN, Rufus R. DINRIFO. Techno-economic evaluation of wind energy in southwest Nigeria[J]. Front Energ, 2012, 6(4): 366-378.
[8] Tiejun WANG, Yuping LI, Longlong MA, Chuangzhi WU. Biomass to dimethyl ether by gasification/synthesis technologyan alternative biofuel production route[J]. Front Energ, 2011, 5(3): 330-339.
[9] Xiangsong HOU, Shi YANG, Junfu LU, Hai ZHANG, Guangxi YUE. Effect of circulating ash from CFB boilers on NO and N2O emission[J]. Front Energ Power Eng Chin, 2009, 3(2): 241-246.
[10] ZHAO Liangju, GAO Hong, TANG Jingwen, YUAN Yuexiang, WANG Fei. Shock wave of vapor-liquid two-phase flow[J]. Front. Energy, 2008, 2(3): 344-347.
[11] WANG Shurong, LUO Zhongyang, CEN Kefa, ZHUANG Xinshu. Experimental study and product analysis of lignocellulosic biomass hydrolysis under extremely low acids[J]. Front. Energy, 2008, 2(3): 268-272.
[12] PEI Aixia, GUO Liejin, JIN Hui. Experimental research on catalysts and their catalytic mechanism for hydrogen production by gasification of peanut shell in supercritical water[J]. Front. Energy, 2007, 1(4): 451-456.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed