|
|
Spectral emittance measurements of micro/nanostructures in energy conversion: a review |
Shiquan SHAN1, Chuyang CHEN2, Peter G. LOUTZENHISER2, Devesh RANJAN2, Zhijun ZHOU3( ), Zhuomin M. ZHANG2( ) |
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta GA 30332, USA 2. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta GA 30332, USA 3. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract Micro/nanostructures play a key role in tuning the radiative properties of materials and have been applied to high-temperature energy conversion systems for improved performance. Among the various radiative properties, spectral emittance is of integral importance for the design and analysis of materials that function as radiative absorbers or emitters. This paper presents an overview of the spectral emittance measurement techniques using both the direct and indirect methods. Besides, several micro/nanostructures are also introduced, and a special emphasis is placed on the emissometers developed for characterizing engineered micro/nanostructures in high-temperature applications (e.g., solar energy conversion and thermophotovoltaic devices). In addition, both experimental facilities and measured results for different materials are summarized. Furthermore, future prospects in developing instrumentation and micro/nanostructured surfaces for practical applications are also outlined. This paper provides a comprehensive source of information for the application of micro/nanostructures in high-temperature energy conversion engineering.
|
Keywords
concentrating solar power (CSP)
emittance measurements
high temperature
micro/nanostructure
selective absorber
selective emitter
thermophotovoltaics (TPV)
|
Corresponding Author(s):
Zhijun ZHOU,Zhuomin M. ZHANG
|
Online First Date: 28 August 2020
Issue Date: 14 September 2020
|
|
1 |
L A Weinstein, J Loomis, B Bhatia, D M Bierman, E N Wang, G Chen. Concentrating solar power. Chemical Reviews, 2015, 115(23): 12797–12838
https://doi.org/10.1021/acs.chemrev.5b00397
|
2 |
O Behar. Solar thermal power plants—a review of configurations and performance comparison. Renewable & Sustainable Energy Reviews, 2018, 92: 608–627
https://doi.org/10.1016/j.rser.2018.04.102
|
3 |
H Daneshvar, R Prinja, N P Kherani. Thermophotovoltaics: fundamentals, challenges and prospects. Applied Energy, 2015, 159: 560–575
https://doi.org/10.1016/j.apenergy.2015.08.064
|
4 |
S Basu, Y B Chen, Z M Zhang. Microscale radiation in thermophotovoltaic devices—a review. International Journal of Energy Research, 2007, 31(6–7): 689–716
https://doi.org/10.1002/er.1286
|
5 |
C Ferrari, F Melino, M Pinelli, P R Spina. Thermophotovoltaic energy conversion: analytical aspects, prototypes and experiences. Applied Energy, 2014, 113: 1717–1730
https://doi.org/10.1016/j.apenergy.2013.08.064
|
6 |
C S Turchi, Z Ma, T W Neises, M J Wagner. Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems. Journal of Solar Energy Engineering, 2013, 135(4): 041007
https://doi.org/10.1115/1.4024030
|
7 |
M Romero, A Steinfeld. Concentrating solar thermal power and thermochemical fuels. Energy & Environmental Science, 2012, 5(11): 9234–9245
https://doi.org/10.1039/c2ee21275g
|
8 |
P Bermel, J Lee, J D Joannopoulos, I Celanovic, M Soljacie. Selective solar absorbers. Annual Review of Heat Transfer, 2012, 15(15): 231–254
https://doi.org/10.1615/AnnualRevHeatTransfer.2012004119
|
9 |
Z Zhou, E Sakr, Y Sun, P Bermel. Solar thermophotovoltaics: reshaping the solar spectrum. Nanophotonics, 2016, 5(1): 1–21
https://doi.org/10.1515/nanoph-2016-0011
|
10 |
N A Pfiester, T E Vandervelde. Selective emitters for thermophotovoltaic applications. Physica Status Solidi (A), Applications and Materials Science, 2017, 214(1): 1600410
https://doi.org/10.1002/pssa.201600410
|
11 |
A Lenert, D M Bierman, Y Nam, W R Chan, I Celanović, M Soljačić, E N Wang. A nanophotonic solar thermophotovoltaic device. Nature Nanotechnology, 2014, 9(2): 126–130
https://doi.org/10.1038/nnano.2013.286
|
12 |
Y Nam, Y X Yeng, A Lenert, P Bermel, I Celanovic, M Soljačić, E N Wang. Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters. Solar Energy Materials and Solar Cells, 2014, 122: 287–296
https://doi.org/10.1016/j.solmat.2013.12.012
|
13 |
M Shimizu, A Kohiyama, H Yugami. High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter. Journal of Photonics for Energy, 2015, 5(1): 053099
https://doi.org/10.1117/1.JPE.5.053099
|
14 |
E Rephaeli, S Fan. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Optics Express, 2009, 17(17): 15145–15159
https://doi.org/10.1364/OE.17.015145
|
15 |
I E Khodasevych, L Wang, A Mitchell, G Rosengarten. Micro- and nanostructured surfaces for selective solar absorption. Advanced Optical Materials, 2015, 3(7): 852–881
https://doi.org/10.1002/adom.201500063
|
16 |
Z M Zhang. Nano/microscale Heat Transfer. 2nd ed. Springer Nature Switzerland AG, 2020
|
17 |
V Rinnerbauer, S Ndao, Y X Yeng, W R Chan, J J Senkevich, J D Joannopoulos, M Soljačić, I Celanovic. Recent developments in high-temperature photonic crystals for energy conversion. Energy & Environmental Science, 2012, 5(10): 8815–8823
https://doi.org/10.1039/c2ee22731b
|
18 |
Z M Zhang, L P Wang. Measurements and modeling of the spectral and directional radiative properties of micro/nanostructured materials. International Journal of Thermophysics, 2013, 34(12): 2209–2242
https://doi.org/10.1007/s10765-011-1036-5
|
19 |
M Honner, P Honnerova. Survey of emissivity measurement by radiometric methods. Applied Optics, 2015, 54(4): 669–683
https://doi.org/10.1364/AO.54.000669
|
20 |
L P Wang, S Basu, Z M Zhang. Direct and indirect methods for calculating thermal emission from layered structures with nonuniform temperatures. Journal of Heat Transfer, 2011, 133(7): 072701
https://doi.org/10.1115/1.4003543
|
21 |
J M Jones, P E Mason, A Williams. A compilation of data on the radiant emissivity of some materials at high temperatures. Journal of the Energy Institute, 2019, 92(3): 523–534
https://doi.org/10.1016/j.joei.2018.04.006
|
22 |
C Monte, J Hollandt. The measurement of directional spectral emissivity in the temperature range from 80°C to 500°C at the Physikalisch-Technische Bundesanstalt. High Temperatures. High Pressures, 2010, 39(2): 151–164
|
23 |
C Monte, B Gutschwager, S P Morozova, J Hollandt. Radiation thermometry and emissivity measurements under vacuum at the PTB. International Journal of Thermophysics, 2009, 30(1): 203–219
https://doi.org/10.1007/s10765-008-0442-9
|
24 |
C P Cagran, L M Hanssen, M Noorma, A V Gura, S N Mekhontsev. Temperature-resolved infrared spectral emissivity of SiC and Pt-10Rh for temperatures up to 900°C. International Journal of Thermophysics, 2007, 28(2): 581–597
https://doi.org/10.1007/s10765-007-0183-1
|
25 |
L P Wang, S Basu, Z M Zhang. Direct measurement of thermal emission from a Fabry-Perot cavity resonator. Journal of Heat Transfer, 2012, 134(7): 072701
https://doi.org/10.1115/1.4006088
|
26 |
L Mercatelli, M Meucci, E Sani. Facility for assessing spectral normal emittance of solid materials at high temperature. Applied Optics, 2015, 54(29): 8700–8705
https://doi.org/10.1364/AO.54.008700
|
27 |
L del Campo, R B Pérez-Sáez , X Esquisabel, I Fernández, M J Tello. New experimental device for infrared spectral directional emissivity measurements in a controlled environment. Review of Scientific Instruments, 2006, 77(11): 113111
https://doi.org/10.1063/1.2393157
|
28 |
L M Hanssen, C P Cagran, A V Prokhorov, S N Mekhontsev, V B Khromchenko. Use of a high-temperature integrating sphere reflectometer for surface-temperature measurements. International Journal of Thermophysics, 2007, 28(2): 566–580
https://doi.org/10.1007/s10765-007-0180-4
|
29 |
Y F Zhang, J M Dai, Z W Wang, W D Pan, L Zhang. A spectral emissivity measurement facility for solar absorbing coatings. International Journal of Thermophysics, 2013, 34(5): 916–925
https://doi.org/10.1007/s10765-012-1171-7
|
30 |
C J Fu, Z M Zhang. Thermal radiative properties of metamaterials and other nanostructured materials: a review. Frontiers of Energy and Power Engineering in China, 2009, 3(1): 11–26
https://doi.org/10.1007/s11708-009-0009-x
|
31 |
Z M Zhang, H Ye. Measurements of radiative properties of engineered micro-/nanostructures. Annual Review of Heat Transfer, 2013, 16(1): 345–396
https://doi.org/10.1615/AnnualRevHeatTransfer.v16.120
|
32 |
A Dan, H C Barshilia, K Chattopadhyay, B Basu. Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: a critical review. Renewable & Sustainable Energy Reviews, 2017, 79: 1050–1077
https://doi.org/10.1016/j.rser.2017.05.062
|
33 |
M F Modest. Radiative Heat Transfer. 3rd ed. New York: Academic Press, 2013
|
34 |
Z M Zhang, B K Tsai, G Machin. Radiometric Temperature Measurements: I. Fundamentals; II. Applications. New York: Academic Press, 2009
|
35 |
J R Howell, M P Menguc, R Siegel. Thermal Radiation Heat Transfer. 6th ed. New York: CRC Press, 2015
|
36 |
A Worthing. Temperature radiation emissivities and emittances. Journal of Applied Physics, 1940, 11(6): 421–437
https://doi.org/10.1063/1.1712790
|
37 |
K Ramanathan, S Yen. High-temperature emissivities of copper, aluminum, and silver. Journal of the Optical Society of America, 1977, 67(1): 32–38
https://doi.org/10.1364/JOSA.67.000032
|
38 |
H Masuda, M Higano. Measurement of total hemispherical emissivities of metal wires by using transient calorimetric technique. Journal of Heat Transfer, 1988, 110(1): 166–172
https://doi.org/10.1115/1.3250448
|
39 |
F Zhang, K Yu, K Zhang, Y Liu, K Xu, Y Liu. An emissivity measurement apparatus for near infrared spectrum. Infrared Physics & Technology, 2015, 73: 275–280
https://doi.org/10.1016/j.infrared.2015.10.001
|
40 |
P Yang, H Ye, Z M Zhang. Experimental demonstration of the effect of magnetic polaritons on the radiative properties of deep aluminum gratings. Journal of Heat Transfer, 2019, 141(5): 052702
https://doi.org/10.1115/1.4042698
|
41 |
H J Lee, A C Bryson, Z M Zhang. Measurement and modeling of the emittance of silicon wafers with anisotropic roughness. International Journal of Thermophysics, 2007, 28(3): 918–933
https://doi.org/10.1007/s10765-007-0192-0
|
42 |
P Yang, C Chen, Z M Zhang. A dual-layer structure with record-high solar reflectance for daytime radiative cooling. Solar Energy, 2018, 169: 316–324
https://doi.org/10.1016/j.solener.2018.04.031
|
43 |
Y M Guo, S J Pang, Z J Luo, Y Shuai, H P Tan, H Qi. Measurement of directional spectral emissivity at high temperatures. International Journal of Thermophysics, 2019, 40(1): 10
https://doi.org/10.1007/s10765-018-2472-2
|
44 |
D Ren, H Tan, Y Xuan, Y Han, Q Li. Apparatus for measuring spectral emissivity of solid materials at elevated temperatures. International Journal of Thermophysics, 2016, 37(5): 51
https://doi.org/10.1007/s10765-016-2058-9
|
45 |
R B Pérez-Sáez, L Campo, M J Tello. Analysis of the accuracy of methods for the direct measurement of emissivity. International Journal of Thermophysics, 2008, 29(3): 1141–1155
https://doi.org/10.1007/s10765-008-0402-4
|
46 |
P Honnerová, J Martan, M Honner. Uncertainty determination in high-temperature spectral emissivity measurement method of coatings. Applied Thermal Engineering, 2017, 124: 261–270
https://doi.org/10.1016/j.applthermaleng.2017.06.022
|
47 |
C Monte, J Hollandt. The determination of the uncertainties of spectral emissivity measurements in air at the PTB. Metrologia, 2010, 47(2): S172–S181
https://doi.org/10.1088/0026-1394/47/2/S14
|
48 |
A Adibekyan, C Monte, M Kehrt, B Gutschwager, J Hollandt.Emissivity measurement under vacuum from 4 mm to 100 mm and from -40°C to 450°C at PTB. International Journal of Thermophysics, 2015, 36(2–3): 283–289
https://doi.org/10.1007/s10765-014-1745-7
|
49 |
D D Burleigh, L M Hanssen, K E Cramer, S N Mekhontsev, V B Khromchenko, G R Peacock. Infrared spectral emissivity characterization facility at NIST. In: Proceedings of SPIE—The International Society for Optical Engineering (Thermosense 26), Orlando, FL, USA, 2004, 5404: 1–12
|
50 |
L P Wang, Z M Zhang. Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures. Journal of Heat Transfer, 2013, 135(9): 091505
https://doi.org/10.1115/1.4024469
|
51 |
Z Yuan, J Zhang, J Zhao, Y Liang, Y Duan. Linearity study of a spectral emissivity measurement facility. International Journal of Thermophysics, 2009, 30(1): 227–235
https://doi.org/10.1007/s10765-008-0446-5
|
52 |
M Balat-Pichelin, J L Sans, C Escape, H Combes. Emissivity of Elgiloy and pure niobium at high temperature for the Solar Orbiter mission. Vacuum, 2017, 142: 87–95
https://doi.org/10.1016/j.vacuum.2017.05.012
|
53 |
J Ma, Y Zhang, L Wu, H Li, L Song. An apparatus for spectral emissivity measurements of thermal control materials at low temperatures. Materials (Basel), 2019, 12(7): 1141
https://doi.org/10.3390/ma12071141
|
54 |
P Honnerová, J Martan, M Kučera, M Honner, J Hameury. New experimental device for high-temperature normal spectral emissi-vity measurements of coatings. Measurement Science & Technology, 2014, 25(9): 095501
https://doi.org/10.1088/0957-0233/25/9/095501
|
55 |
M Honner, P Honnerová, M Kučera, J Martan. Laser scanning heating method for high-temperature spectral emissivity analyses. Applied Thermal Engineering, 2016, 94: 76–81
https://doi.org/10.1016/j.applthermaleng.2015.10.121
|
56 |
K L Donaldson Hanna, B T Greenhagen, W R Patterson III, C M Pieters, J F Mustard, N E Bowles, D A Paige, T D Glotch, C Thompson. Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: application to Diviner thermal infrared observations of the Moon. Icarus, 2017, 283: 326–342
https://doi.org/10.1016/j.icarus.2016.05.034
|
57 |
G Cao, S J Weber, S O Martin, T L Malaney, S R Slattery, M H Anderson, K Sridharan, T R Allen. In situ measurements of spectral emissivity of materials for very high temperature reactors. Nuclear Technology, 2011, 175(2): 460–467
https://doi.org/10.13182/NT11-A12317
|
58 |
J Gorewoda, V Scherer. Influence of carbonate decomposition on normal spectral radiative emittance in the context of oxyfuel combustion. Energy & Fuels, 2016, 30(11): 9752–9760
https://doi.org/10.1021/acs.energyfuels.6b01398
|
59 |
J Gorewoda, V Scherer. Normal radiative emittance of coal ash sulfates in the context of oxyfuel combustion. Energy & Fuels, 2017, 31(4): 4400–4406
https://doi.org/10.1021/acs.energyfuels.6b02866
|
60 |
P J Hesketh, J N Zemel, B Gebhart. Organ pipe radiant modes of periodic micromachined silicon surfaces. Nature, 1986, 324(6097): 549–551
https://doi.org/10.1038/324549a0
|
61 |
P Hesketh, B Gebhart, J Zemel. Measurements of the spectral and directional emission from microgrooved silicon surfaces. Journal of Heat Transfer, 1988, 110(3): 680–686
https://doi.org/10.1115/1.3250545
|
62 |
F Kusunoki, T Kohama, T Hiroshima, S Fukumoto, J Takahara, T Kobayashi. Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavities. Japanese Journal of Applied Physics, 2004, 43(8A): 5253–5258
https://doi.org/10.1143/JJAP.43.5253
|
63 |
H Sai, H Yugami, Y Akiyama, Y Kanamori, K Hane. Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2001, 18(7): 1471–1476
https://doi.org/10.1364/JOSAA.18.001471
|
64 |
H Sai, H Yugami, K Nakamura, N Nakagawa, H Ohtsubo, S Maruyama. Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophotovoltaic generation of electricity. Japanese Journal of Applied Physics, 2000, 39(Part 1, No. 4A): 1957–1961
https://doi.org/10.1143/JJAP.39.1957
|
65 |
D Kirikae, Y Suzuki, N Kasagi. A silicon microcavity selective emitter with smooth surfaces for thermophotovoltaic power generation. Journal of Micromechanics and Microengineering, 2010, 20(10): 104006
https://doi.org/10.1088/0960-1317/20/10/104006
|
66 |
K Hanamura, Y Kameya. Spectral control of thermal radiation using rectangular micro-cavities on emitter-surface for thermophotovoltaic generation of electricity. Journal of Thermal Science and Technology, 2008, 3(1): 33–44
https://doi.org/10.1299/jtst.3.33
|
67 |
J R Markham, P R Solomon, P E Best. An FT-IR based instrument for measuring spectral emittance of material at high temperature. Review of Scientific Instruments, 1990, 61(12): 3700–3708
https://doi.org/10.1063/1.1141538
|
68 |
J Ishii, A Ono. Fourier transform spectrometer for thermal-infrared emissivity measurements near room temperatures. In: Proceedings of SPIE—The International Society for Optical Engineering (Optical Diagnostic Methods for Inorganic Materials II), San Diego, USA, 2000, 4103:126–132
|
69 |
K Nakazawa, A Ohnishi. Simultaneous measurement method of normal spectral emissivity and optical constants of solids at high temperature in vacuum. International Journal of Thermophysics, 2010, 31(10): 2010–2018
https://doi.org/10.1007/s10765-010-0847-0
|
70 |
G W Lee, S Jeon, N J Yoo, C W Park, S N Park, S Y Kwon, S H Lee. Normal and directional spectral emittance measurement of semi-transparent materials using two-substrate method: alumina. International Journal of Thermophysics, 2011, 32(6): 1234–1246
https://doi.org/10.1007/s10765-011-0986-y
|
71 |
S Hatzl, M Kirschner, V Lippig, T Sander, C Mundt, M Pfitzner. Direct measurements of infrared normal spectral emissivity of solid materials for high-temperature applications. International Journal of Thermophysics, 2013, 34(11): 2089–2101
https://doi.org/10.1007/s10765-013-1531-y
|
72 |
W Bauer, A Moldenhauer, H Oertel. Thermal radiation properties of different metals. In: Proceedings of SPIE—The International Society for Optical Engineering (Thermosense 28), Kissimmee, FL, USA, 2006, 6205: 62050E
|
73 |
T Fu, M Duan, J Tang, C Shi. Measurements of the directional spectral emissivity based on a radiation heating source with alternating spectral distributions. International Journal of Heat and Mass Transfer, 2015, 90: 1207–1213
https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.064
|
74 |
D Hernandez, D Antoine, G Olalde, J M Gineste. Optical fiber reflectometer coupled with a solar concentrator to determine solar reflectivity and absorptivity at high temperature. Journal of Solar Energy Engineering, 1999, 121(1): 31–35
https://doi.org/10.1115/1.2888139
|
75 |
A Boubault, B Claudet, O Faugeroux, G Olalde. Accelerated aging of a solar absorber material subjected to highly concentrated solar flux. Energy Procedia, 2014, 49: 1673–1681
https://doi.org/10.1016/j.egypro.2014.03.176
|
76 |
A Soum-Glaude, A Le Gal, M Bichotte, C Escape, L Dubost. Optical characterization of TiAlNx/TiAlNy/Al2O3 tandem solar selective absorber coatings. Solar Energy Materials and Solar Cells, 2017, 170: 254–262
https://doi.org/10.1016/j.solmat.2017.06.007
|
77 |
H Wang, V Prasad Sivan, A Mitchell, G Rosengarten, P Phelan, L Wang. Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Solar Energy Materials and Solar Cells, 2015, 137: 235–242
https://doi.org/10.1016/j.solmat.2015.02.019
|
78 |
Y Yang, S Taylor, H Alshehri, L Wang. Wavelength-selective and diffuse infrared thermal emission mediated by magnetic polaritons from silicon carbide metasurfaces. Applied Physics Letters, 2017, 111(5): 051904
https://doi.org/10.1063/1.4996865
|
79 |
X F Li, Y R Chen, J Miao, P Zhou, Y X Zheng, L Y Chen, Y P Lee. High solar absorption of a multilayered thin film structure. Optics Express, 2007, 15(4): 1907–1912
https://doi.org/10.1364/OE.15.001907
|
80 |
J J Greffet, R Carminati, K Joulain, J P Mulet, S Mainguy, Y Chen. Coherent emission of light by thermal sources. Nature, 2002, 416(6876): 61–64
https://doi.org/10.1038/416061a
|
81 |
H Sai, Y Kanamori, H Yugami. Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures. Journal of Micromechanics and Microengineering, 2005, 15(9): S243–S249
https://doi.org/10.1088/0960-1317/15/9/S12
|
82 |
L P Wang, Z M Zhang. Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics. Applied Physics Letters, 2012, 100(6): 063902
https://doi.org/10.1063/1.3684874
|
83 |
B Zhao, Z M Zhang. Study of magnetic polaritons in deep gratings for thermal emission control. Journal of Quantitative Spectroscopy & Radiative Transfer, 2014, 135: 81–89
https://doi.org/10.1016/j.jqsrt.2013.11.016
|
84 |
B J Lee, L P Wang, Z M Zhang. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Optics Express, 2008, 16(15): 11328–11336
https://doi.org/10.1364/OE.16.011328
|
85 |
A Sakurai, B Zhao, Z M Zhang. Prediction of the resonance condition of metamaterial emitters and absorbers using LC circuit model. In: Proceedings of the 15th International Heat Transfer Conference IHTC15–9012, Begel House Inc., 2014
|
86 |
B Zhao, L P Wang, Y Shuai, Z M Zhang. Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure. International Journal of Heat and Mass Transfer, 2013, 67: 637–645
https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.047
|
87 |
Y X Yeng, M Ghebrebrhan, P Bermel, W R Chan, J D Joannopoulos, M Soljacic, I Celanovic. Enabling high-temperature nanophotonics for energy applications. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2280–2285
https://doi.org/10.1073/pnas.1120149109
|
88 |
V Rinnerbauer, Y X Yeng, J J Senkevich, J D, Joannopoulos M Soljačić, I Celanovic. Large area selective emitters/absorbers based on 2D tantalum photonic crystals for high-temperature energy applications. In: Proceedings of SPIE—The International Society for Optical Engineering (Photonic and Phononic Properties of Engineered Nanostructures III), San Francisco, CA, USA, 2013, 8632: 863207
|
89 |
B J Lee, C J Fu, Z M Zhang. Coherent thermal emission from one-dimensional photonic crystals. Applied Physics Letters, 2005, 87(7): 071904
https://doi.org/10.1063/1.2010613
|
90 |
I Setién-Fernández, T Echániz, L González-Fernández, R B Pérez-Sáez, E Céspedes, J A Sánchez-García, L Álvarez-Fraga, R Escobar Galindo, J M Albella, C Prieto, M J Tello. First spectral emissivity study of a solar selective coating in the 150°C–600°C temperature range. Solar Energy Materials and Solar Cells, 2013, 117: 390–395
https://doi.org/10.1016/j.solmat.2013.07.002
|
91 |
T Echániz, I Setién-Fernández, R B Pérez-Sáez, C Prieto, R E Galindo, M J Tello. Importance of the spectral emissivity measurements at working temperature to determine the efficiency of a solar selective coating. Solar Energy Materials and Solar Cells, 2015, 140: 249–252
https://doi.org/10.1016/j.solmat.2015.04.009
|
92 |
A Dan, B Basu, T Echániz, I González de Arrieta, G A López, H C Barshilia. Effects of environmental and operational variability on the spectrally selective properties of W/WAlN/WAlON/Al2O3-based solar absorber coating. Solar Energy Materials and Solar Cells, 2018, 185: 342–350
https://doi.org/10.1016/j.solmat.2018.04.020
|
93 |
J Jyothi, A Soum-Glaude, H S Nagaraja, H C Barshilia. Measurement of high temperature emissivity and photothermal conversion efficiency of TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO spectrally selective coating. Solar Energy Materials and Solar Cells, 2017, 171: 123–130
https://doi.org/10.1016/j.solmat.2017.06.057
|
94 |
J Chen, J Guo, L Y Chen. Super-wideband perfect solar light absorbers using titanium and silicon dioxide thin-film cascade optical nanocavities. Optical Materials Express, 2016, 6(12): 3804–3813
https://doi.org/10.1364/OME.6.003804
|
95 |
Y Li, C Lin, D Zhou, Y An, D Li, C Chi, H Huang, S Yang, C Y Tso, C Y H Chao, B Huang. Scalable all-ceramic nanofilms as highly efficient and thermally stable selective solar absorbers. Nano Energy, 2019, 64: 103947
https://doi.org/10.1016/j.nanoen.2019.103947
|
96 |
C C Chang, W J M Kort-Kamp, J Nogan, T S Luk, A K Azad, A J Taylor, D A R Dalvit, M Sykora, H T Chen. High-temperature refractory metasurfaces for solar thermophotovoltaic energy harvesting. Nano Letters, 2018, 18(12): 7665–7673
https://doi.org/10.1021/acs.nanolett.8b03322
|
97 |
W Li, U Guler, N Kinsey, G V Naik, A Boltasseva, J Guan, V M Shalaev, A V Kildishev. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Advanced Materials, 2014, 26(47): 7959–7965
https://doi.org/10.1002/adma.201401874
|
98 |
Y Huang, L Liu, M Pu, X Li, X Ma, X Luo. A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum. Nanoscale, 2018, 10(17): 8298–8303
https://doi.org/10.1039/C8NR01728J
|
99 |
V Rinnerbauer, A Lenert, D M Bierman, Y X Yeng, W R Chan, R D Geil, J J Senkevich, J D Joannopoulos, E N Wang, M Soljačić, I Celanovic. Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics. Advanced Energy Materials, 2014, 4(12): 1400334
https://doi.org/10.1002/aenm.201400334
|
100 |
P Li, B Liu, Y Ni, K K Liew, J Sze, S Chen, S Shen. Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion. Advanced Materials, 2015, 27(31): 4585–4591
https://doi.org/10.1002/adma.201501686
|
101 |
H Sai, H Yugami, Y Kanamori, K Hane. Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion. Solar Energy Materials and Solar Cells, 2003, 79(1): 35–49
https://doi.org/10.1016/S0927-0248(02)00364-1
|
102 |
R Sakakibara, V Stelmakh, W R Chan, M Ghebrebrhan, J D Joannopoulos, M Soljačić, I Čelanović. Practical emitters for thermophotovoltaics: a review. Journal of Photonics for Energy, 2019, 9(3): 032713
https://doi.org/10.1117/1.JPE.9.032713
|
103 |
A Datas, A Martí. Thermophotovoltaic energy in space applications: review and future potential. Solar Energy Materials and Solar Cells, 2017, 161: 285–296
https://doi.org/10.1016/j.solmat.2016.12.007
|
104 |
E J Tervo, E Bagherisereshki, Z M Zhang. Near-field radiative thermoelectric energy converters: a review. Frontiers in Energy, 2018, 12(1): 5–21
https://doi.org/10.1007/s11708-017-0517-z
|
105 |
A Heinzel, V Boerner, A Gombert, B Bläsi, V Wittwer, J Luther. Radiation filters and emitters for the NIR based on periodically structured metal surfaces. Journal of Modern Optics, 2000, 47(13): 2399–2419
https://doi.org/10.1080/09500340008230522
|
106 |
F Marquier, K Joulain, J P Mulet, R Carminati, J J Greffet, Y Chen. Coherent spontaneous emission of light by thermal sources. Physical Review. B, 2004, 69(15): 155412
https://doi.org/10.1103/PhysRevB.69.155412
|
107 |
S Maruyama, T Kashiwa, H Yugami, M Esashi. Thermal radiation from two-dimensionally confined modes in microcavities. Applied Physics Letters, 2001, 79(9): 1393–1395
https://doi.org/10.1063/1.1397759
|
108 |
H Sai, Y Kanamori, H Yugami. High-temperature resistive surface grating for spectral control of thermal radiation. Applied Physics Letters, 2003, 82(11): 1685–1687
https://doi.org/10.1063/1.1560867
|
109 |
H Sai, H Yugami. Thermophotovoltaic generation with selective radiators based on tungsten surface gratings. Applied Physics Letters, 2004, 85(16): 3399–3401
https://doi.org/10.1063/1.1807031
|
110 |
T Kondo, S Hasegawa, T Yanagishita, N Kimura, T Toyonaga, H Masuda. Control of thermal radiation in metal hole array structures formed by anisotropic anodic etching of Al. Optics Express, 2018, 26(21): 27865–27872
https://doi.org/10.1364/OE.26.027865
|
111 |
J Fang, Y Xuan, Q Li, D Fan, J Huang. Investigation on the coupling effect of thermochromism and microstructure on spectral properties of structured surfaces. Applied Surface Science, 2012, 258(18): 7140–7145
https://doi.org/10.1016/j.apsusc.2012.04.015
|
112 |
J G Huang, Y M Xuan, Q Li. Narrow-band thermal radiation based on microcavity resonant effect. Chinese Physics Letters, 2014, 31(9): 094207
https://doi.org/10.1088/0256-307X/31/9/094207
|
113 |
D Fan, Q Li, Y M Xuan, Y Xia. Thermal radiation from silicon microcavity coated with thermochromic film. Solar Energy Materials and Solar Cells, 2016, 144: 331–338
https://doi.org/10.1016/j.solmat.2015.09.022
|
114 |
D Woolf, J Hensley, J G Cederberg, D T Bethke, A D Grine, E A Shaner. Heterogeneous metasurface for high temperature selective emission. Applied Physics Letters, 2014, 105(8): 081110
https://doi.org/10.1063/1.4893742
|
115 |
V Stelmakh, V Rinnerbauer, W R Chan, J J Senkevich, J D Joannopoulos, M Soljacic, I Celanovic. Performance of tantalum-tungsten alloy selective emitters in thermophotovoltaic systems. In: Proceedings of SPIE—The International Society for Optical Engineering, (Energy Harvesting and Storage: Materials, Devices, and Applications V), Baltimore, MD, USA, 2014, 9115: 911504
|
116 |
V Stelmakh, V Rinnerbauer, W R Chan, J J Senkevich, J D Joannopoulos, M Soljacic, I Celanovic. Tantalum-tungsten alloy photonic crystals for high-temperature energy conversion systems. In: Proceedings of SPIE—The International Society for Optical Engineering (Photonic Crystal Materials and Devices XI), Brussels, Belgium, 2014, 9127: 91270Q
|
117 |
B J Lee, Y B Chen, Z M Zhang. Surface waves between metallic films and truncated photonic crystals observed with reflectance spectroscopy. Optics Letters, 2008, 33(3): 204–206
https://doi.org/10.1364/OL.33.000204
|
118 |
B J Lee, Z M Zhang. Indirect measurements of coherent thermal emission from a truncated photonic crystal structure. Journal of Thermophysics and Heat Transfer, 2009, 23(1): 9–17
https://doi.org/10.2514/1.36819
|
119 |
S Y Lin, J Moreno, J G Fleming. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Applied Physics Letters, 2003, 83(2): 380–382
https://doi.org/10.1063/1.1592614
|
120 |
J H Lee, Y S Kim, K Constant, K M Ho. Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission. Advanced Materials, 2007, 19(6): 791–794
https://doi.org/10.1002/adma.200602550
|
121 |
M Qi, E Lidorikis, P T Rakich, S G Johnson, J D Joannopoulos, E P Ippen, H I Smith. A three-dimensional optical photonic crystal with designed point defects. Nature, 2004, 429(6991): 538–542
https://doi.org/10.1038/nature02575
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|