A novel cryogenic insulation system of hollow glass microspheres and self-evaporation vapor-cooled shield for liquid hydrogen storage

Jianpeng ZHENG, Liubiao CHEN, Ping WANG, Jingjie ZHANG, Junjie WANG, Yuan ZHOU

PDF(1279 KB)
PDF(1279 KB)
Front. Energy ›› 2020, Vol. 14 ›› Issue (3) : 570-577. DOI: 10.1007/s11708-019-0642-y
RESEARCH ARTICLE
RESEARCH ARTICLE

A novel cryogenic insulation system of hollow glass microspheres and self-evaporation vapor-cooled shield for liquid hydrogen storage

Author information +
History +

Abstract

Liquid hydrogen (LH2) attracts widespread attention because of its highest energy storage density. However, evaporation loss is a serious problem in LH2 storage due to the low boiling point (20 K). Efficient insulation technology is an important issue in the study of LH2 storage. Hollow glass microspheres (HGMs) is a potential promising thermal insulation material because of its low apparent thermal conductivity, fast installation (Compared with multi-layer insulation, it can be injected in a short time.), and easy maintenance. A novel cryogenic insulation system consisting of HGMs and a self-evaporating vapor-cooled shield (VCS) is proposed for storage of LH2. A thermodynamic model has been established to analyze the coupled heat transfer characteristics of HGMs and VCS in the composite insulation system. The results show that the combination of HGMs and VCS can effectively reduce heat flux into the LH2 tank. With the increase of VCS number from 1 to 3, the minimum heat flux through HGMs decreases by 57.36%, 65.29%, and 68.21%, respectively. Another significant advantage of HGMs is that their thermal insulation properties are not sensitive to ambient vacuum change. When ambient vacuum rises from 103 Pa to 1 Pa, the heat flux into the LH2 tank increases by approximately 20%. When the vacuum rises from 103 Pa to 100 Pa, the combination of VCS and HGMs reduces the heat flux into the tank by 58.08%–69.84% compared with pure HGMs.

Keywords

liquid hydrogen storage / hollow glass microspheres (HGMs) / self-evaporation vapor-cooled shield (VCS) / thermodynamic optimization

Cite this article

Download citation ▾
Jianpeng ZHENG, Liubiao CHEN, Ping WANG, Jingjie ZHANG, Junjie WANG, Yuan ZHOU. A novel cryogenic insulation system of hollow glass microspheres and self-evaporation vapor-cooled shield for liquid hydrogen storage. Front. Energy, 2020, 14(3): 570‒577 https://doi.org/10.1007/s11708-019-0642-y

References

[1]
Yan X H, Zhang X, Gu C H, Li F. Power to gas: addressing renewable curtailment by converting to hydrogen. Frontiers in Energy, 2018, 12(4): 560–568
CrossRef Google scholar
[2]
Khosravi A, Koury R N N, Machado L, Pabon J J G. Energy, exergy and economic analysis of a hybrid renewable energy with hydrogen storage system. Energy, 2018, 148: 1087–1102
CrossRef Google scholar
[3]
Mostafaeipour A, Qolipour M, Goudarzi H. Feasibility of using wind turbines for renewable hydrogen production in Firuzkuh, Iran. Frontiers in Energy, 2018: 1–12
CrossRef Google scholar
[4]
Pachapur V L, Sarma S J, Brar S K, Bihan Y L, Buelna G, Verma M. Energy balance of hydrogen production from wastes of biodiesel production. Biofuels, 2018, 9(2): 129–138
CrossRef Google scholar
[5]
Chen X P, Shangguan W F. Hydrogen production from water splitting on CdS-based photocatalysts using solar light. Frontiers in Energy, 2013, 7(1): 111–118
CrossRef Google scholar
[6]
Ozarslan A. Large-scale hydrogen energy storage in salt caverns. International Journal of Hydrogen Energy, 2012, 37(19): 14265–14277
CrossRef Google scholar
[7]
Abdalla A M, Hossain S, Petra P M, Ghasemi M, Azad A K.Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review. Frontiers in Energy, 2018: 1–24
CrossRef Google scholar
[8]
Hastings L J, Hedayat A, Brown T M. Analytical modeling and test correlation of variable density multilayer insulation for cryogenic storage. Technical Report, NASA/TM-2004-213175, 2004
[9]
Martin J J, Hastings L. Large-scale liquid hydrogen testing of variable density multilayer insulation with a foam substrate. Technical Report, NASA/TM-2001–211089, 2001
[10]
Tseng C J, Yamaguchi M, Ohmori T. Thermal conductivity of polyurethane foams from room temperature to 20 K. Cryogenics, 1997, 37(6): 305–312
CrossRef Google scholar
[11]
Liu Z, Li Y Z, Xie F S, Zhou K. Thermal performance of foam/MLI for cryogenic liquid hydrogen tank during the ascent and on orbit period. Applied Thermal Engineering, 2016, 98(5): 430–439
CrossRef Google scholar
[12]
Wang Q, Chen J, Gui B Q, Zhai T, Yang D. Fabrication and properties of thermal insulating material using hollow glass microspheres bonded by aluminum-chrome-phosphate and tetraethyl orthosilicate. Ceramics International, 2016, 42(4): 4886–4892
CrossRef Google scholar
[13]
Fesmire J E, Sass J P. Aerogel insulation applications for liquid hydrogen launch vehicle tanks. Cryogenics, 2008, 48(5–6): 223–231
CrossRef Google scholar
[14]
Zhang J S, Fisher T S, Ramachandran P V, Gore J P, Mudawar I. A review of heat transfer issues in hydrogen storage technologies. Journal of Heat Transfer, 2005, 127(12): 1391–1399
CrossRef Google scholar
[15]
Wang F, Liang J S, Tang Q G, Wang N, Li L W. Preparation and properties of thermal insulation latex paint for exterior wall based on defibred sepiolite and hollow glass microspheres. Advanced Materials Research, 2009, 58: 103–108
CrossRef Google scholar
[16]
Li C D, Li B H, Pan N, Chen Z, Saeed M U, Xu T, Yang Y. Thermo-physical properties of polyester fiber reinforced fumed silica/hollow glass microsphere composite core and resulted vacuum insulation panel. Energy and Building, 2016, 125: 298–309
CrossRef Google scholar
[17]
Yan K Q, Wang P, Zhang J J. Progress in the cryogenic insulation of hollow glass microspheres. Vacuum and Cryogenics, 2016, 22(2): 63–69
[18]
Sass J P, Cyr W W S, Barrett T M, Baumgartner R G, Lott J W, Fesmire J E, Weisend J G. Glass bubbles insulation for liquid hydrogen storage tanks. AIP Conference Proceedings, 2010, 1218: 772–779
CrossRef Google scholar
[19]
Wang P, Liao B, An Z G, Yan K, Zhang J. Measurement and calculation of cryogenic thermal conductivity of HGMs. International Journal of Heat and Mass Transfer, 2019, 129: 591–598
CrossRef Google scholar
[20]
Allen M S, Baumgartner R G, Fesmire J E, Augustynowicz S D.Advances in microsphere insulation systems. AIP Conference Proceedings, 2004, 710: 619–626
CrossRef Google scholar
[21]
Yuan J, An Z, Li B, Zhang J. Facile aqueous synthesis and thermal insulating properties of low-density glass/TiO2 core/shell composite hollow spheres. Particuology, 2012, 10(4): 475–479
CrossRef Google scholar
[22]
Zheng J P, Chen L B, Wang J, Zhou Y, Wang J. Thermodynamic modelling and optimization of self-evaporation vapor cooled shield for liquid hydrogen storage tank. Energy Conversion and Management, 2019, 184: 74–82
CrossRef Google scholar
[23]
Jiang W B, Zuo Z Q, Huang Y H, Wang B, Sun P J, Li P. Coupling optimization of composite insulation and vapor-cooled shield for on-orbit cryogenic storage tank. Cryogenics, 2018, 96: 90–98
CrossRef Google scholar
[24]
Skochdopole R E. The thermal conductivity of foamed plastics. Chemical Engineering Progress, 1961, 57(10): 55–59
[25]
Wang P. Research and application of vacuum thermal insulation performance of hollow glass microspheres. Dissertation for the Doctoral Degree. Beijing: University of Chinese Academy of Sciences, 2018 (in Chinese)
[26]
Yung K C, Zhu B L, Yue T M, Xie C. Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites. Composites Science and Technology, 2009, 69(2): 260–264
CrossRef Google scholar
[27]
Fesmire J E, Augustynowicz S D. Thermal performance testing of glass microspheres under cryogenic vacuum conditions. AIP Conference Proceedings, 2004, 710(1): 612–618
CrossRef Google scholar
[28]
Cunnington G R, Tien C L. Apparent thermal conductivity of uncoated microsphere cryogenic insulation. Advances in Cryogenic Engineering, 1977, 22: 263–271
CrossRef Google scholar
[29]
Zhu Q, Lee H, Zhang Z M. Radiative properties of materials with surface scattering or volume scattering: a review. Frontiers of Energy and Power Engineering in China, 2009, 3(1): 60–79
CrossRef Google scholar
[30]
Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature, 2001, 414(6861): 353–358
CrossRef Google scholar
[31]
Zheng J P, Chen L B, Wang J, Xi X, Zhu H, Zhou Y, Wang J. Thermodynamic analysis and comparison of four insulation schemes for liquid hydrogen storage tank. Energy Conversion and Management, 2019, 186: 526–534
CrossRef Google scholar
[32]
Yang J L, Tang J B. Influence of envelope insulation materials on building energy consumption. Frontiers in Energy, 2017, 11(4): 575–581
CrossRef Google scholar
[33]
Lim C L, Adam N M, Ahmad K A. Cryogenic pipe flow simulation for liquid nitrogen with vacuum insulated pipe (VIP) and Polyurethane (PU) foam insulation under steady-state conditions. Thermal Science and Engineering Progress, 2018, 7: 302–310
CrossRef Google scholar
[34]
Zheng J P, Chen L B, Cui C, Guo J, Zhu W, Zhou Y, Wang J. Experimental study on composite insulation system of spray on foam insulation and variable density multilayer insulation. Applied Thermal Engineering, 2018, 130: 161–168
CrossRef Google scholar

Acknowledgment

This research was supported by the State Key Laboratory of Technologies in Space Cryogenic Propellants, China (Grant No. SKLTSCP1903), the National Natural Science Foundation of China (Grant Nos. 51706233, 51427806, and U1831203), the Strategic Pilot Projects in Space Science of China (Grant No. XDA15010400), and the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC028).

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1279 KB)

Accesses

Citations

Detail

Sections
Recommended

/