Recent progress in MoS2 for solar energy conversion applications

Soheil RASHIDI, Akshay CARINGULA, Andy NGUYEN, Ijeoma OBI, Chioma OBI, Wei WEI

PDF(3809 KB)
PDF(3809 KB)
Front. Energy ›› 2019, Vol. 13 ›› Issue (2) : 251-268. DOI: 10.1007/s11708-019-0625-z
REVIEW ARTICLE
REVIEW ARTICLE

Recent progress in MoS2 for solar energy conversion applications

Author information +
History +

Abstract

In an era of graphene-based nanomaterials as the most widely studied two-dimensional (2D) materials for enhanced performance of devices and systems in solar energy conversion applications, molybdenum disulfide (MoS2) stands out as a promising alternative 2D material with excellent properties. This review first examined various methods for MoS2 synthesis. It, then, summarized the unique structure and properties of MoS2 nanosheets. Finally, it presented the latest advances in the use of MoS2 nanosheets for important solar energy applications, including solar thermal water purification, photocatalytic process, and photoelectrocatalytic process.

Keywords

2D nanomaterial / molybdenum disulfide / solar energy conversion / solar thermal conversion / photocatalytst / photoelectrocatalyst

Cite this article

Download citation ▾
Soheil RASHIDI, Akshay CARINGULA, Andy NGUYEN, Ijeoma OBI, Chioma OBI, Wei WEI. Recent progress in MoS2 for solar energy conversion applications. Front. Energy, 2019, 13(2): 251‒268 https://doi.org/10.1007/s11708-019-0625-z

References

[1]
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11): 699–712
CrossRef Google scholar
[2]
Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
CrossRef Google scholar
[3]
Rao C N R, Maitra U, Matte H S S R. Synthesis, characterization, and selected properties of graphene. In: Rao C N, Sood A K, eds. Graphene: Synthesis, Properties, and Phenomena. Wiley, 2013, 1–47
[4]
Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chemical Society Reviews, 2012, 41(2): 666–686
CrossRef Google scholar
[5]
Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H. Graphene-based materials: synthesis, characterization, properties, and applications. Small, 2011, 7(14): 1876–1902
CrossRef Google scholar
[6]
Huang X, Zeng Z, Zhang H. Metal dichalcogenide nanosheets: preparation, properties and applications. Chemical Society Reviews, 2013, 42(5): 1934–1946
CrossRef Google scholar
[7]
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013, 5(4): 263–275
CrossRef Google scholar
[8]
Wilson J A, Yoffe A. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 1969, 18(73): 193–335
CrossRef Google scholar
[9]
Ataca C, Sahin H, Ciraci S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. Journal of Physical Chemistry C, 2012, 116(16): 8983–8999
CrossRef Google scholar
[10]
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013, 5(4): 263–275
CrossRef Google scholar
[11]
Rao C N R, Maitra U, Waghmare U V. Extraordinary attributes of 2-dimensional MoS2 nanosheets. Chemical Physics Letters, 2014, 609: 172–183
CrossRef Google scholar
[12]
Tan C, Zhang H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chemical Society Reviews, 2015, 44(9): 2713–2731
CrossRef Google scholar
[13]
Huang X, Tan C, Yin Z, Zhang H. 25th Anniversary Article: Hybrid nanostructures based on two-dimensional nanomaterials. Advanced Materials, 2014, 26(14): 2185–2204
CrossRef Google scholar
[14]
Novoselov K, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451–10453
CrossRef Google scholar
[15]
Singh E, Nalwa HS. Graphene-based bulk-heterojunction solar cells: a review. Journal of Nanoscience and Nanotechnology, 2015, 15(9): 6237–6278
[16]
Singh E, Nalwa H S. Stability of graphene-based heterojunction solar cells. RSC Advances, 2015, 5(90): 73575–73600
CrossRef Google scholar
[17]
Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(7459): 419–425
CrossRef Google scholar
[18]
Cao X, Tan C, Zhang X, Zhao W, Zhang H. Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion. Advanced Materials, 2016, 28(29): 6167–6196
CrossRef Google scholar
[19]
Chia X, Ambrosi A, Sofer Z, Luxa J, Pumera M. Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment. ACS Nano, 2015, 9(5): 5164–5179
CrossRef Google scholar
[20]
Chou S S, Sai N, Lu P, Coker E N, Liu S, Artyushkova K, Luk T S, Kaehr B, Brinker C J. Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nature Communications, 2015, 6(1): 8311
CrossRef Google scholar
[21]
Loo A H, Bonanni A, Sofer Z, Pumera M. Transitional metal/chalcogen dependant interactions of hairpin DNA with transition metal dichalcogenides, MX2. ChemPhysChem, 2015, 16(11): 2304–2306
CrossRef Google scholar
[22]
Kalantar-zadeh K, Ou J Z, Daeneke T, Strano M S, Pumera M, Gras S L. Two-dimensional transition metal dichalcogenides in biosystems. Advanced Functional Materials, 2015, 25(32): 5086–5099
CrossRef Google scholar
[23]
Sarkar D, Xie X, Kang J, Zhang H, Liu W, Navarrete J, Moskovits M, Banerjee K. Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing. Nano Letters, 2015, 15(5): 2852–2862
CrossRef Google scholar
[24]
Kertesz M, Hoffmann R. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. Journal of the American Chemical Society, 1984, 106(12): 3453–3460
CrossRef Google scholar
[25]
Divigalpitiya W R, Morrison S R, Frindt R. Thin oriented films of molybdenum disulphide. Thin Solid Films, 1990, 186(1): 177–192
CrossRef Google scholar
[26]
Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy V B, Eda G, Chhowalla M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Letters, 2013, 13(12): 6222–6227
CrossRef Google scholar
[27]
Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 2011, 133(19): 7296–7299
CrossRef Google scholar
[28]
Toh R J, Sofer Z, Luxa J, Sedmidubský D, Pumera M. 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chemical Communications, 2017, 53(21): 3054–3057
CrossRef Google scholar
[29]
Ambrosi A, Sofer Z, Pumera M. 2H→1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chemical Communications, 2015, 51(40): 8450–8453
CrossRef Google scholar
[30]
Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451–10453
CrossRef Google scholar
[31]
Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6(1): 74–80
CrossRef Google scholar
[32]
Li H, Lu G, Yin Z, He Q, Li H, Zhang Q, Zhang H. Optical identification of single- and few-layer MoS2 sheets. Small, 2012, 8(5): 682–686
CrossRef Google scholar
[33]
Li H, Lu G, Wang Y, Yin Z, Cong C, He Q, Wang L, Ding F, Yu T, Zhang H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small, 2013, 9(11): 1974–1981
CrossRef Google scholar
[34]
Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q, Zhang H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small, 2012, 8(1): 63–67
CrossRef Google scholar
[35]
Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angewandte Chemie International Edition, 2011, 50(47): 11093–11097
CrossRef Google scholar
[36]
Zeng Z, Sun T, Zhu J, Huang X, Yin Z, Lu G, Fan Z, Yan Q, Hng H H, Zhang H. An effective method for the fabrication of few-layer-thick Inorganic nanosheets. Angewandte Chemie International Edition, 2012, 51(36): 9052–9056
CrossRef Google scholar
[37]
Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D, Nicolosi V. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331(6017): 568–571
CrossRef Google scholar
[38]
Zhou K G, Mao N N, Wang H X, Peng Y, Zhang H L. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angewandte Chemie International Edition, 2011, 50(46): 10839–10842
CrossRef Google scholar
[39]
Shi Y, Zhou W, Lu A Y, Fang W, Lee Y H, Hsu A L, Kim S M, Kim K K, Yang H Y, Li L J, Idrobo J C, Kong J. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Letters, 2012, 12(6): 2784–2791
CrossRef Google scholar
[40]
Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S, Li L J. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Letters, 2012, 12(3): 1538–1544
CrossRef Google scholar
[41]
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150
CrossRef Google scholar
[42]
Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F. Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010, 10(4): 1271–1275
CrossRef Google scholar
[43]
Lee K, Kim H Y, Lotya M, Coleman J N, Kim G T, Duesberg G S. Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Advanced Materials, 2011, 23(36): 4178–4182
CrossRef Google scholar
[44]
Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M. Photoluminescence from chemically exfoliated MoS2. Nano Letters, 2011, 11(12): 5111–5116
CrossRef Google scholar
[45]
Voiry D, Goswami A, Kappera R, Silva C C C, Kaplan D, Fujita T, Chen M, Asefa T, Chhowalla M. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nature Chemistry, 2015, 7(1): 45–49
CrossRef Google scholar
[46]
Py M, Haering R. Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Canadian Journal of Physics, 1983, 61(1): 76–84
CrossRef Google scholar
[47]
Heising J, Kanatzidis M G. Structure of restacked MoS2 and WS2 elucidated by electron crystallography. Journal of the American Chemical Society, 1999, 121(4): 638–643
CrossRef Google scholar
[48]
Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M, Chhowalla M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano, 2012, 6(8): 7311–7317
CrossRef Google scholar
[49]
Voiry D, Goswami A, Kappera R, Silva C C C, Kaplan D, Fujita T, Chen M, Asefa T, Chhowalla M. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nature Chemistry, 2015, 7(1): 45–49
CrossRef Google scholar
[50]
Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, Lin T W. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials, 2012, 24(17): 2320–2325
CrossRef Google scholar
[51]
Zhan Y, Liu Z, Najmaei S, Ajayan P M, Lou J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small, 2012, 8(7): 966–971
CrossRef Google scholar
[52]
Lin Y C, Zhang W, Huang J K, Liu K K, Lee Y H, Liang C T, Chu C W, Li L J. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012, 4(20): 6637–6641
CrossRef Google scholar
[53]
Xie X, Ao Z, Su D, Zhang J, Wang G. MoS2/Graphene composite anodes with enhanced performance for sodium-Ion batteries: the role of the two-dimensional heterointerface. Advanced Functional Materials, 2015, 25(9): 1393–1403
CrossRef Google scholar
[54]
Shi Z T, Kang W, Xu J, Sun Y W, Jiang M, Ng T W, Xue H T, Yu D Y W, Zhang W, Lee C S. Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy, 2016, 22: 27–37
CrossRef Google scholar
[55]
Wang M, Li G, Xu H, Qian Y, Yang J. Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Applied Materials & Interfaces, 2013, 5(3): 1003–1008
CrossRef Google scholar
[56]
Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou X W D, Xie Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Advanced Materials, 2013, 25(40): 5807–5813
CrossRef Google scholar
[57]
Ramakrishna Matte H S S, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C N R. MoS2 and WS2 analogues of graphene. Angewandte Chemie International Edition, 2010, 49(24): 4059–4062
CrossRef Google scholar
[58]
Lu Y, Yao X, Yin J, Peng G, Cui P, Xu X. MoS2 nanoflowers consisting of nanosheets with a controllable interlayer distance as high-performance lithium ion battery anodes. RSC Advances, 2015, 5(11): 7938–7943
CrossRef Google scholar
[59]
Wang P P, Sun H, Ji Y, Li W, Wang X. Three-dimensional assembly of single-layered MoS2. Advanced Materials, 2014, 26(6): 964–969
CrossRef Google scholar
[60]
Wang Z, Mi B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environmental Science & Technology, 2017, 51(15): 8229–8244
CrossRef Google scholar
[61]
Scalise E, Houssa M, Pourtois G, Afanas′ev V V, Stesmans A. First-principles study of strained 2D MoS2. Physica E, Low-Dimensional Systems and Nanostructures, 2014, 56: 416–421
CrossRef Google scholar
[62]
Mak K F, Lee C, Hone J, Shan J, Heinz T F. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, 105(13): 136805
CrossRef Google scholar
[63]
Han S, Kwon H, Kim S K, Ryu S, Yun W S, Kim D H, Hwang J H, Kang J S, Baik J, Shin H J, Hong S C. Band-gap transition induced by interlayer van der Waals interaction in MoS2. Physical Review. B, 2011, 84(4): 045409
CrossRef Google scholar
[64]
Ebnonnasir A, Narayanan B, Kodambaka S, Ciobanu C V. Tunable MoS2 band gap in MoS2-graphene heterostructures. Applied Physics Letters, 2014, 105(3): 031603
CrossRef Google scholar
[65]
Peelaers H, Van de Walle C G. Effects of strain on band structure and effective masses in MoS2. Physical Review. B, 2012, 86(24): 241401
CrossRef Google scholar
[66]
Lipatov A, Sharma P, Gruverman A, Sinitskii A. Optoelectrical molybdenum disulfide (MoS2) ferroelectric memories. ACS Nano, 2015, 9(8): 8089–8098
CrossRef Google scholar
[67]
Cheiwchanchamnangij T, Lambrecht W R. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Physical Review. B, 2012, 85(20): 205302
CrossRef Google scholar
[68]
Shi H, Pan H, Zhang Y W, Yakobson B I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Physical Review. B, 2013, 87(15): 155304
CrossRef Google scholar
[69]
Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C, Wu J. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Letters, 2012, 12(11): 5576–5580
CrossRef Google scholar
[70]
Scheer R, Schock H W. Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices. John Wiley & Sons, 2011
[71]
Smith A M, Nie S. Semiconductor nanocrystals: structure, properties, and band gap engineering. Accounts of Chemical Research, 2010, 43(2): 190–200
CrossRef Google scholar
[72]
Zhang H, Zhou W, Yang Z, Wu S, Ouyang F, Xu H. A first-principles study of impurity effects on monolayer MoS2: bandgap dominated by donor impurities. Materials Research Express, 2017, 4(12): 126301
CrossRef Google scholar
[73]
Kim S, Fisher B, Eisler H J, Bawendi M. Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. Journal of the American Chemical Society, 2003, 125(38): 11466–11467
CrossRef Google scholar
[74]
Zhao W, Liu Y, Wei Z, Yang S, He H, Sun C. Fabrication of a novel p–n heterojunction photocatalyst n-BiVO4@ p-MoS2 with core–shell structure and its excellent visible-light photocatalytic reduction and oxidation activities. Applied Catalysis B: Environmental, 2016, 185: 242–252
CrossRef Google scholar
[75]
Li H, Yu K, Lei X, Guo B, Fu H, Zhu Z. Hydrothermal synthesis of novel MoS2/BiVO4 hetero-nanoflowers with enhanced photocatalytic activity and a mechanism investigation. Journal of Physical Chemistry C, 2015, 119(39): 22681–22689
CrossRef Google scholar
[76]
Meng F, Li J, Cushing S K, Zhi M, Wu N. Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. Journal of the American Chemical Society, 2013, 135(28): 10286–10289
CrossRef Google scholar
[77]
Ji K, Deng J, Zang H, Han J, Arandiyan H, Dai H. Fabrication and high photocatalytic performance of noble metal nanoparticles supported on 3DOM InVO4–BiVO4 for the visible-light-driven degradation of rhodamine B and methylene blue. Applied Catalysis B: Environmental, 2015, 165: 285–295
CrossRef Google scholar
[78]
Ho W, Yu J C, Lin J, Yu J, Li P. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir, 2004, 20(14): 5865–5869
CrossRef Google scholar
[79]
Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. Journal of the American Chemical Society, 2008, 130(23): 7176–7177
CrossRef Google scholar
[80]
Xu H, Li H, Wu C, Chu J, Yan Y, Shu H, Gu Z. Preparation, characterization and photocatalytic properties of Cu-loaded BiVO4. Journal of Hazardous Materials, 2008, 153(1–2): 877–884
CrossRef Google scholar
[81]
Kang J, Sahin H, Peeters F O M. Tuning carrier confinement in the MoS2/WS2 lateral heterostructure. Journal of Physical Chemistry C, 2015, 119(17): 9580–9586
CrossRef Google scholar
[82]
Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M. An extended defect in graphene as a metallic wire. Nature Nanotechnology, 2010, 5(5): 326–329
CrossRef Google scholar
[83]
Zou X, Liu Y, Yakobson B I. Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Letters, 2013, 13(1): 253–258
CrossRef Google scholar
[84]
Singh A K, Yakobson B I. Electronics and magnetism of patterned graphene nanoroads. Nano Letters, 2009, 9(4): 1540–1543
CrossRef Google scholar
[85]
Hu Z, Zhang S, Zhang Y N, Wang D, Zeng H, Liu L M. Modulating the phase transition between metallic and semiconducting single-layer MoS2 and WS2 through size effects. Physical Chemistry Chemical Physics, 2015, 17(2): 1099–1105
CrossRef Google scholar
[86]
Kang J, Li J, Li S S, Xia J B, Wang L W. Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Letters, 2013, 13(11): 5485–5490
CrossRef Google scholar
[87]
Zhang L, Drummond E, Brodney M A, Cianfrogna J, Drozda S E, Grimwood S, Vanase-Frawley M A, Villalobos A. Design, synthesis and evaluation of [3H]PF-7191, a highly specific nociceptin opioid peptide (NOP) receptor radiotracer for in vivo receptor occupancy (RO) studies. Bioorganic & Medicinal Chemistry Letters, 2014, 24(22): 5219–5223
CrossRef Google scholar
[88]
Ghim D, Jiang Q, Cao S, Singamaneni S, Jun Y S. Mechanically interlocked 1T/2H phases of MoS2 nanosheets for solar thermal water purification. Nano Energy, 2018, 53: 949–957
CrossRef Google scholar
[89]
Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69–96
CrossRef Google scholar
[90]
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
CrossRef Google scholar
[91]
Ding Q, Song B, Xu P, Jin S. Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds. Chem, 2016, 1(5): 699–726
CrossRef Google scholar
[92]
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11): 699–712
CrossRef Google scholar
[93]
Karunadasa H I, Montalvo E, Sun Y, Majda M, Long J R, Chang C J. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science, 2012, 335(6069): 698–702
CrossRef Google scholar
[94]
Chang K, Li M, Wang T, Ouyang S, Li P, Liu L, Ye J. Drastic layer-number-dependent activity enhancement in photocatalytic H2 evolution over nMoS2/CdS (n≥1) under visible light. Advanced Energy Materials, 2015, 5(10): 1402279
CrossRef Google scholar
[95]
Han H, Kim K M, Lee C W, Lee C S, Pawar R C, Jones J L, Hong Y R, Ryu J H, Song T, Kang S H, Choi H, Mhin S. Few-layered metallic 1T-MoS2/TiO2 with exposed (001) facets: two-dimensional nanocomposites for enhanced photocatalytic activities. Physical Chemistry Chemical Physics, 2017, 19(41): 28207–28215
CrossRef Google scholar
[96]
Hsiao M C, Chang C Y, Niu L J, Bai F, Li L J, Shen H H, Lin J Y, Lin T W. Ultrathin 1T-phase MoS2 nanosheets decorated hollow carbon microspheres as highly efficient catalysts for solar energy harvesting and storage. Journal of Power Sources, 2017, 345: 156–164
CrossRef Google scholar
[97]
Hu C, Zheng S, Lian C, Chen F, Lu T, Hu Q, Duo S, Zhang R, Guan C. α-S nanoparticles grown on MoS2 nanosheets: a novel sulfur-based photocatalyst with enhanced photocatalytic performance. Journal of Molecular Catalysis A Chemical, 2015, 396: 128–135
CrossRef Google scholar
[98]
Ding Y, Zhou Y, Nie W, Chen P. MoS2–GO nanocomposites synthesized via a hydrothermal hydrogel method for solar light photocatalytic degradation of methylene blue. Applied Surface Science, 2015, 357: 1606–1612
CrossRef Google scholar
[99]
Zhang W, Xiao X, Zheng L, Wan C. Fabrication of TiO2/MoS2@ zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light. Applied Surface Science, 2015, 358: 468–478
CrossRef Google scholar
[100]
Zhu C, Zhang L, Jiang B, Zheng J, Hu P, Li S, Wu M, Wu W. Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Applied Surface Science, 2016, 377: 99–108
CrossRef Google scholar
[101]
Kumar S, Baruah A, Tonda S, Kumar B, Shanker V, Sreedhar B. Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/gC3N4 core-shell nanoplates with excellent visible-light responsive photocatalysis. Nanoscale, 2014, 6(9): 4830–4842
CrossRef Google scholar
[102]
Theerthagiri J, Senthil R, Malathi A, Selvi A, Madhavan J, Ashokkumar M. Synthesis and characterization of a CuS–WO3 composite photocatalyst for enhanced visible light photocatalytic activity. RSC Advances, 2015, 5(65): 52718–52725
CrossRef Google scholar
[103]
Zhang L, Sun L, Liu S, Huang Y, Xu K, Ma F. Effective charge separation and enhanced photocatalytic activity by the heterointerface in MoS2/reduced graphene oxide composites. RSC Advances, 2016, 6(65): 60318–60326
CrossRef Google scholar
[104]
Jo W K, Adinaveen T, Vijaya J J, Sagaya Selvam N C. Synthesis of MoS2 nanosheet supported Z-scheme TiO2/gC3N4 photocatalysts for the enhanced photocatalytic degradation of organic water pollutants. RSC Advances, 2016, 6(13): 10487–10497
CrossRef Google scholar
[105]
Kumar S, Sharma V, Bhattacharyya K, Krishnan V. Synergetic effect of MoS2–RGO doping to enhance the photocatalytic performance of ZnO nanoparticles. New Journal of Chemistry, 2016, 40(6): 5185–5197
CrossRef Google scholar
[106]
Xia J, Ge Y, Zhao D, Di J, Ji M, Yin S, Li H, Chen R. Microwave-assisted synthesis of few-layered MoS2/BiOBr hollow microspheres with superior visible-light-response photocatalytic activity for ciprofloxacin removal. CrystEngComm, 2015, 17(19): 3645–3651
CrossRef Google scholar
[107]
Wang C, Lin H, Xu Z, Cheng H, Zhang C. One-step hydrothermal synthesis of flowerlike MoS2/CdS heterostructures for enhanced visible-light photocatalytic activities. RSC Advances, 2015, 5(20): 15621–15626
CrossRef Google scholar
[108]
Gamage J, Zhang Z. Applications of photocatalytic disinfection. International Journal of Photoenergy, 2010, 764870
[109]
Agnihotri S, Bajaj G, Mukherji S, Mukherji S. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale, 2015, 7(16): 7415–7429
CrossRef Google scholar
[110]
Hajipour M J, Fromm K M, Akbar Ashkarran A, Jimenez de Aberasturi D, Larramendi I R, Rojo T, Serpooshan V, Parak W J, Mahmoudi M. Antibacterial properties of nanoparticles. Trends in Biotechnology, 2012, 30(10): 499–511
CrossRef Google scholar
[111]
Sunada K, Watanabe T, Hashimoto K. Studies on photokilling of bacteria on TiO2 thin film. Journal of Photochemistry and Photobiology A Chemistry, 2003, 156: 227–233
CrossRef Google scholar
[112]
Sirelkhatim A, Mahmud S, Seeni A, Kaus N H M, Ann L C, Bakhori S K M, Hasan H, Mohamad D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters, 2015, 7(3): 219–242
CrossRef Google scholar
[113]
Awasthi G P, Adhikari S P, Ko S, Kim H J, Park C H, Kim C S. Facile synthesis of ZnO flowers modified graphene like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties. Journal of Alloys and Compounds, 2016, 682: 208–215
CrossRef Google scholar
[114]
Liu W, Feng Y, Tang H, Yuan H, He S, Miao S. Immobilization of silver nanocrystals on carbon nanotubes using ultra-thin molybdenum sulfide sacrificial layers for antibacterial photocatalysis in visible light. Carbon, 2016, 96: 303–310
CrossRef Google scholar
[115]
Liu Y R, Hu W H, Li X, Dong B, Shang X, Han G Q, Chai Y M, Liu Y Q, Liu C G. Facile one-pot synthesis of CoS2-MoS2/CNTs as efficient electrocatalyst for hydrogen evolution reaction. Applied Surface Science, 2016, 384: 51–57
CrossRef Google scholar
[116]
Wen M Q, Xiong T, Zang Z G, Wei W, Tang X S, Dong F. Synthesis of MoS2/g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of nitric oxide (NO). Optics Express, 2016, 24(10): 10205–10212
CrossRef Google scholar
[117]
Yuan Y J, Tu J R, Ye Z J, Chen D Q, Hu B, Huang Y W, Chen T T, Cao D P, Yu Z T, Zou Z G. MoS2-graphene/ZnIn2S4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: a highly efficient photocatalyst for solar hydrogen generation. Applied Catalysis B: Environmental, 2016, 188: 13–22
CrossRef Google scholar
[118]
Powers D E, Hansen S G, Geusic M E, Puiu A C, Hopkins J B, Dietz T G, Duncan M A, Langridge-Smith P R R, Smalley R E. Supersonic metal cluster beams: laser photoionization studies of copper cluster (Cu2). Journal of Physical Chemistry, 1982, 86(14): 2556–2560
CrossRef Google scholar
[119]
Chen X, Shen S, Guo L, Mao S S. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews, 2010, 110(11): 6503–6570
CrossRef Google scholar
[120]
Xu Y, Schoonen M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 2000, 85(3–4): 543–556
CrossRef Google scholar
[121]
Laursen A B, Kegnæs S, Dahl S, Chorkendorff I. Molybdenum sulfides—efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy & Environmental Science, 2012, 5(2): 5577–5591
CrossRef Google scholar
[122]
Yuan Y J, Yu Z T, Li Y H, Lu H W, Chen X, Tu W G, Ji Z G, Zou Z G. A MoS2/6,13-pentacenequinone composite catalyst for visible-light-induced hydrogen evolution in water. Applied Catalysis B: Environmental, 2016, 181: 16–23
CrossRef Google scholar
[123]
Yuan Y J, Ye Z J, Lu H W, Hu B, Li Y H, Chen D Q, Zhong J S, Yu Z T, Zou Z G. Constructing anatase TiO2 nanosheets with exposed (001) facets/layered MoS2 two-dimensional nanojunctions for enhanced solar hydrogen generation. ACS Catalysis, 2016, 6(2): 532–541
CrossRef Google scholar
[124]
Liu Y R, Hu W H, Li X, Dong B, Shang X, Han G Q, Chai Y M, Liu Y Q, Liu C G. One-pot synthesis of hierarchical Ni2P/MoS2 hybrid electrocatalysts with enhanced activity for hydrogen evolution reaction. Applied Surface Science, 2016, 383: 276–282
CrossRef Google scholar
[125]
He H Y. Efficient hydrogen evolution activity of 1T-MoS2/Si-doped TiO2 nanotube hybrids. International Journal of Hydrogen Energy, 2017, 42(32): 20739–20748
CrossRef Google scholar
[126]
Li X B, Gao Y J, Wu H L, Wang Y, Guo Q, Huang M Y, Chen B, Tung C H, Wu L Z. Assembling metallic 1T-MoS2 nanosheets with inorganic-ligand stabilized quantum dots for exceptional solar hydrogen evolution. Chemical Communications, 2017, 53(41): 5606–5609
CrossRef Google scholar
[127]
Xu H, Yi J, She X, Liu Q, Song L, Chen S, Yang Y, Song Y, Vajtai R, Lou J, Li H, Yuan S, Wu J, Ajayan P M. 2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 220: 379–385
CrossRef Google scholar
[128]
Du P, Zhu Y, Zhang J, Xu D, Peng W, Zhang G, Zhang F, Fan X. Metallic 1T phase MoS2 nanosheets as a highly efficient co-catalyst for the photocatalytic hydrogen evolution of CdS nanorods. RSC Advances, 2016, 6(78): 74394–74399
CrossRef Google scholar
[129]
Ding Q, Meng F, English C R, Cabán-Acevedo M, Shearer M J, Liang D, Daniel A S, Hamers R J, Jin S. Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2. Journal of the American Chemical Society, 2014, 136(24): 8504–8507
CrossRef Google scholar
[130]
Wang D, Su B, Jiang Y, Li L, Ng B K, Wu Z, Liu F. Polytype 1T/2H MoS2 heterostructures for efficient photoelectrocatalytic hydrogen evolution. Chemical Engineering Journal, 2017, 330: 102–108
CrossRef Google scholar
[131]
Xiang Q, Yu J, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2nanoparticles. Journal of the American Chemical Society, 2012, 134(15): 6575–6578
CrossRef Google scholar
[132]
Chou S S, Kaehr B, Kim J, Foley B M, De M, Hopkins P E, Huang J, Brinker C J, Dravid V P. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angewandte Chemie, 2013, 125(15): 4254–4258
CrossRef Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3809 KB)

Accesses

Citations

Detail

Sections
Recommended

/