Please wait a minute...

Frontiers in Energy

Front. Energy    2019, Vol. 13 Issue (2) : 251-268     https://doi.org/10.1007/s11708-019-0625-z
REVIEW ARTICLE
Recent progress in MoS2 for solar energy conversion applications
Soheil RASHIDI, Akshay CARINGULA, Andy NGUYEN, Ijeoma OBI, Chioma OBI, Wei WEI()
Department of Mechanical Engineering, Wichita State University, Wichita KS 67260, USA
Download: PDF(3809 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In an era of graphene-based nanomaterials as the most widely studied two-dimensional (2D) materials for enhanced performance of devices and systems in solar energy conversion applications, molybdenum disulfide (MoS2) stands out as a promising alternative 2D material with excellent properties. This review first examined various methods for MoS2 synthesis. It, then, summarized the unique structure and properties of MoS2 nanosheets. Finally, it presented the latest advances in the use of MoS2 nanosheets for important solar energy applications, including solar thermal water purification, photocatalytic process, and photoelectrocatalytic process.

Keywords 2D nanomaterial      molybdenum disulfide      solar energy conversion      solar thermal conversion      photocatalytst      photoelectrocatalyst     
Corresponding Authors: Wei WEI   
Online First Date: 16 May 2019    Issue Date: 04 July 2019
 Cite this article:   
Soheil RASHIDI,Akshay CARINGULA,Andy NGUYEN, et al. Recent progress in MoS2 for solar energy conversion applications[J]. Front. Energy, 2019, 13(2): 251-268.
 URL:  
http://journal.hep.com.cn/fie/EN/10.1007/s11708-019-0625-z
http://journal.hep.com.cn/fie/EN/Y2019/V13/I2/251
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Soheil RASHIDI
Akshay CARINGULA
Andy NGUYEN
Ijeoma OBI
Chioma OBI
Wei WEI
Fig.1  Metal coordinate, top view, and stacking sequence of TMD structure (Reproduced from Ref. [28] with permission from the Royal Society of Chemistry)
Fig.2  Schematic of functionalization scheme
Fig.3  Charaterization of MoSe2 and MoS2
Fig.4  Mechanisms of band gap engineering in semiconductor nanocrystals through size, shape, composition, impurity doping, heterostructure band offset, and lattice strain (Reproduced from Ref. [71] with permission from American Chemical Society)
Fig.5  (a) UV-vis absorption spectra of as-prepared BiVO4, MoS2 and BiVO4@MoS2; (b–f) the plot of (ahn)2 vs. energy hv and band gap energy of the as-prepared samples (Reproduced from Ref. [80] with permission from Elsevier)
Fig.6  p-n heterojunction photocatalyst formation model and the mechanism of photocatalysis of p-n heterojunction photocatalyst (Reproduced from Ref. [80] with permission from Elsevier)
Fig.7  Band structures and LDOS
Fig.8  Characterization of MoS2
Fig.9  Basic edge dislocations formed by removal of shaded atoms
Fig.10  Performance evaluation of catalysts
Fig.11  Band gap position and redox levels for the HER for (a) MoS2 at the flat band potential; (b) MoS2 at large negative bias; (c) Si at flat band potential; and (d) Si at negative bias (From the figure it is seen that the HER does not occur spontaneously on bulk MoS2, but requires additional quantum confinement, or high p-type donor concentrations. In (b) the MoS2 is biased enough that the HER occurs, the exact potential cannot be defined. On Si the HER occur readily even at slightly positive bias vs. RHE, until the flat band potential (c) at more negative potentials the HER occurs even faster (d) (Reproduced from Ref. [121] with permission from Royal Society of Chemical)
Fig.12  Schematic illustration of the charge transfer in TiO2/MG composites (The proposed mechanism for the enhanced electron transfer in the TiO2/MG system under irradiation assumes that the photo excited electrons are transferred from the CB of TiO2 not only to the MoS2 nanosheets but also to the C atoms in the graphene sheets, which can effectively reduce H+ to produce H2 (Reproduced from Ref. [131] with permission from American Chemical Society)
1 Q H Wang, K Kalantar-Zadeh, A Kis, J N Coleman, M S Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11): 699–712
https://doi.org/10.1038/nnano.2012.193
2 A K Geim, K S Novoselov. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
https://doi.org/10.1038/nmat1849
3 C N R Rao, U Maitra, H S S R Matte. Synthesis, characterization, and selected properties of graphene. In: Rao C N, Sood A K, eds. Graphene: Synthesis, Properties, and Phenomena. Wiley, 2013, 1–47
4 X Huang, X Qi, F Boey, H Zhang. Graphene-based composites. Chemical Society Reviews, 2012, 41(2): 666–686
https://doi.org/10.1039/C1CS15078B
5 X Huang, Z Yin, S Wu, X Qi, Q He, Q Zhang, Q Yan, F Boey, H Zhang. Graphene-based materials: synthesis, characterization, properties, and applications. Small, 2011, 7(14): 1876–1902
https://doi.org/10.1002/smll.201002009
6 X Huang, Z Zeng, H Zhang. Metal dichalcogenide nanosheets: preparation, properties and applications. Chemical Society Reviews, 2013, 42(5): 1934–1946
https://doi.org/10.1039/c2cs35387c
7 M Chhowalla, H S Shin, G Eda, L J Li, K P Loh, H Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013, 5(4): 263–275
https://doi.org/10.1038/nchem.1589
8 J A Wilson, A Yoffe. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 1969, 18(73): 193–335
https://doi.org/10.1080/00018736900101307
9 C Ataca, H Sahin, S Ciraci. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. Journal of Physical Chemistry C, 2012, 116(16): 8983–8999
https://doi.org/10.1021/jp212558p
10 M Chhowalla, H S Shin, G Eda, L J Li, K P Loh, H Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013, 5(4): 263–275
https://doi.org/10.1038/nchem.1589
11 C N R Rao, U Maitra, U V Waghmare. Extraordinary attributes of 2-dimensional MoS2 nanosheets. Chemical Physics Letters, 2014, 609: 172–183
https://doi.org/10.1016/j.cplett.2014.06.003
12 C Tan, H Zhang. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chemical Society Reviews, 2015, 44(9): 2713–2731
https://doi.org/10.1039/C4CS00182F
13 X Huang, C Tan, Z Yin, H Zhang. 25th Anniversary Article: Hybrid nanostructures based on two-dimensional nanomaterials. Advanced Materials, 2014, 26(14): 2185–2204
https://doi.org/10.1002/adma.201304964
14 K Novoselov, D Jiang, F Schedin, T J Booth, V V Khotkevich, S V Morozov, A K Geim. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451–10453
https://doi.org/10.1073/pnas.0502848102
15 E Singh, HS Nalwa. Graphene-based bulk-heterojunction solar cells: a review. Journal of Nanoscience and Nanotechnology, 2015, 15(9): 6237–6278
16 E Singh, H S Nalwa. Stability of graphene-based heterojunction solar cells. RSC Advances, 2015, 5(90): 73575–73600
https://doi.org/10.1039/C5RA11771B
17 A K Geim, I V Grigorieva. Van der Waals heterostructures. Nature, 2013, 499(7459): 419–425
https://doi.org/10.1038/nature12385
18 X Cao, C Tan, X Zhang, W Zhao, H Zhang. Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion. Advanced Materials, 2016, 28(29): 6167–6196
https://doi.org/10.1002/adma.201504833
19 X Chia, A Ambrosi, Z Sofer, J Luxa, M Pumera. Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment. ACS Nano, 2015, 9(5): 5164–5179
https://doi.org/10.1021/acsnano.5b00501
20 S S Chou, N Sai, P Lu, E N Coker, S Liu, K Artyushkova, T S Luk, B Kaehr, C J Brinker. Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nature Communications, 2015, 6(1): 8311
https://doi.org/10.1038/ncomms9311
21 A H Loo, A Bonanni, Z Sofer, M Pumera. Transitional metal/chalcogen dependant interactions of hairpin DNA with transition metal dichalcogenides, MX2. ChemPhysChem, 2015, 16(11): 2304–2306
https://doi.org/10.1002/cphc.201500311
22 K Kalantar-zadeh, J Z Ou, T Daeneke, M S Strano, M Pumera, S L Gras. Two-dimensional transition metal dichalcogenides in biosystems. Advanced Functional Materials, 2015, 25(32): 5086–5099
https://doi.org/10.1002/adfm.201500891
23 D Sarkar, X Xie, J Kang, H Zhang, W Liu, J Navarrete, M Moskovits, K Banerjee. Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing. Nano Letters, 2015, 15(5): 2852–2862
https://doi.org/10.1021/nl504454u
24 M Kertesz, R Hoffmann. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. Journal of the American Chemical Society, 1984, 106(12): 3453–3460
https://doi.org/10.1021/ja00324a012
25 W R Divigalpitiya, S R Morrison, R Frindt. Thin oriented films of molybdenum disulphide. Thin Solid Films, 1990, 186(1): 177–192
https://doi.org/10.1016/0040-6090(90)90511-B
26 D Voiry, M Salehi, R Silva, T Fujita, M Chen, T Asefa, V B Shenoy, G Eda, M Chhowalla. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Letters, 2013, 13(12): 6222–6227
https://doi.org/10.1021/nl403661s
27 Y Li, H Wang, L Xie, Y Liang, G Hong, H Dai. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 2011, 133(19): 7296–7299
https://doi.org/10.1021/ja201269b
28 R J Toh, Z Sofer, J Luxa, D Sedmidubský , M Pumera. 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chemical Communications, 2017, 53(21): 3054–3057
https://doi.org/10.1039/C6CC09952A
29 A Ambrosi, Z Sofer, M Pumera. 2H→1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chemical Communications, 2015, 51(40): 8450–8453
https://doi.org/10.1039/C5CC00803D
30 K S Novoselov, D Jiang, F Schedin, T J Booth, V V Khotkevich, S V Morozov, A K Geim. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451–10453
https://doi.org/10.1073/pnas.0502848102
31 Z Yin, H Li, H Li, L Jiang, Y Shi, Y Sun, G Lu, Q Zhang, X Chen, H Zhang. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6(1): 74–80
https://doi.org/10.1021/nn2024557
32 H Li, G Lu, Z Yin, Q He, H Li, Q Zhang, H Zhang. Optical identification of single- and few-layer MoS2 sheets. Small, 2012, 8(5): 682–686
https://doi.org/10.1002/smll.201101958
33 H Li, G Lu, Y Wang, Z Yin, C Cong, Q He, L Wang, F Ding, T Yu, H Zhang. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small, 2013, 9(11): 1974–1981
https://doi.org/10.1002/smll.201202919
34 H Li, Z Yin, Q He, H Li, X Huang, G Lu, D W H Fam, A I Y Tok, Q Zhang, H Zhang. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small, 2012, 8(1): 63–67
https://doi.org/10.1002/smll.201101016
35 Z Zeng, Z Yin, X Huang, H Li, Q He, G Lu, F Boey, H Zhang. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angewandte Chemie International Edition, 2011, 50(47): 11093–11097
https://doi.org/10.1002/anie.201106004
36 Z Zeng, T Sun, J Zhu, X Huang, Z Yin, G Lu, Z Fan, Q Yan, H H Hng, H Zhang. An effective method for the fabrication of few-layer-thick Inorganic nanosheets. Angewandte Chemie International Edition, 2012, 51(36): 9052–9056
https://doi.org/10.1002/anie.201204208
37 J N Coleman, M Lotya, A O’Neill, S D Bergin, P J King, U Khan, K Young, A Gaucher, S De, R J Smith, I V Shvets, S K Arora, G Stanton, H Y Kim, K Lee, G T Kim, G S Duesberg, T Hallam, J J Boland, J J Wang, J F Donegan, J C Grunlan, G Moriarty, A Shmeliov, R J Nicholls, J M Perkins, E M Grieveson, K Theuwissen, D W McComb, P D Nellist, V Nicolosi. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331(6017): 568–571
https://doi.org/10.1126/science.1194975
38 K G Zhou, N N Mao, H X Wang, Y Peng, H L Zhang. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angewandte Chemie International Edition, 2011, 50(46): 10839–10842
https://doi.org/10.1002/anie.201105364
39 Y Shi, W Zhou, A Y Lu, W Fang, Y H Lee, A L Hsu, S M Kim, K K Kim, H Y Yang, L J Li, J C Idrobo, J Kong. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Letters, 2012, 12(6): 2784–2791
https://doi.org/10.1021/nl204562j
40 K K Liu, W Zhang, Y H Lee, Y C Lin, M T Chang, C Y Su, C S Chang, H Li, Y Shi, H Zhang, C S Lai, L J Li. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Letters, 2012, 12(3): 1538–1544
https://doi.org/10.1021/nl2043612
41 B Radisavljevic, A Radenovic, J Brivio, V Giacometti, A Kis. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150
https://doi.org/10.1038/nnano.2010.279
42 A Splendiani, L Sun, Y Zhang, T Li, J Kim, C Y Chim, G Galli, F Wang. Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010, 10(4): 1271–1275
https://doi.org/10.1021/nl903868w
43 K Lee, H Y Kim, M Lotya, J N Coleman, G T Kim, G S Duesberg. Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Advanced Materials, 2011, 23(36): 4178–4182
https://doi.org/10.1002/adma.201101013
44 G Eda, H Yamaguchi, D Voiry, T Fujita, M Chen, M Chhowalla. Photoluminescence from chemically exfoliated MoS2. Nano Letters, 2011, 11(12): 5111–5116
https://doi.org/10.1021/nl201874w
45 D Voiry, A Goswami, R Kappera, C C C Silva, D Kaplan, T Fujita, M Chen, T Asefa, M Chhowalla. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nature Chemistry, 2015, 7(1): 45–49
https://doi.org/10.1038/nchem.2108
46 M Py, R Haering. Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Canadian Journal of Physics, 1983, 61(1): 76–84
https://doi.org/10.1139/p83-013
47 J Heising, M G Kanatzidis. Structure of restacked MoS2 and WS2 elucidated by electron crystallography. Journal of the American Chemical Society, 1999, 121(4): 638–643
https://doi.org/10.1021/ja983043c
48 G Eda, T Fujita, H Yamaguchi, D Voiry, M Chen, M Chhowalla. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano, 2012, 6(8): 7311–7317
https://doi.org/10.1021/nn302422x
49 D Voiry, A Goswami, R Kappera, C C C Silva, D Kaplan, T Fujita, M Chen, T Asefa, M Chhowalla. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nature Chemistry, 2015, 7(1): 45–49
https://doi.org/10.1038/nchem.2108
50 Y H Lee, X Q Zhang, W Zhang, M T Chang, C T Lin, K D Chang, Y C Yu, J T W Wang, C S Chang, L J Li, T W Lin. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials, 2012, 24(17): 2320–2325
https://doi.org/10.1002/adma.201104798
51 Y Zhan, Z Liu, S Najmaei, P M Ajayan, J Lou. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small, 2012, 8(7): 966–971
https://doi.org/10.1002/smll.201102654
52 Y C Lin, W Zhang, J K Huang, K K Liu, Y H Lee, C T Liang, C W Chu, L J Li. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012, 4(20): 6637–6641
https://doi.org/10.1039/c2nr31833d
53 X Xie, Z Ao, D Su, J Zhang, G Wang. MoS2/Graphene composite anodes with enhanced performance for sodium-Ion batteries: the role of the two-dimensional heterointerface. Advanced Functional Materials, 2015, 25(9): 1393–1403
https://doi.org/10.1002/adfm.201404078
54 Z T Shi, W Kang, J Xu, Y W Sun, M Jiang, T W Ng, H T Xue, D Y W Yu, W Zhang, C S Lee. Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy, 2016, 22: 27–37
https://doi.org/10.1016/j.nanoen.2016.02.009
55 M Wang, G Li, H Xu, Y Qian, J Yang. Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Applied Materials & Interfaces, 2013, 5(3): 1003–1008
https://doi.org/10.1021/am3026954
56 J Xie, H Zhang, S Li, R Wang, X Sun, M Zhou, J Zhou, X W D Lou, Y Xie. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Advanced Materials, 2013, 25(40): 5807–5813
https://doi.org/10.1002/adma.201302685
57 H S S Ramakrishna Matte, A Gomathi, A K Manna, D J Late, R Datta, S K Pati, C N R Rao. MoS2 and WS2 analogues of graphene. Angewandte Chemie International Edition, 2010, 49(24): 4059–4062
https://doi.org/10.1002/anie.201000009
58 Y Lu, X Yao, J Yin, G Peng, P Cui, X Xu. MoS2 nanoflowers consisting of nanosheets with a controllable interlayer distance as high-performance lithium ion battery anodes. RSC Advances, 2015, 5(11): 7938–7943
https://doi.org/10.1039/C4RA14026E
59 P P Wang, H Sun, Y Ji, W Li, X Wang. Three-dimensional assembly of single-layered MoS2. Advanced Materials, 2014, 26(6): 964–969
https://doi.org/10.1002/adma.201304120
60 Z Wang, B Mi. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environmental Science & Technology, 2017, 51(15): 8229–8244
https://doi.org/10.1021/acs.est.7b01466
61 E Scalise, M Houssa, G Pourtois, V V Afanas′ev, A Stesmans. First-principles study of strained 2D MoS2. Physica E, Low-Dimensional Systems and Nanostructures, 2014, 56: 416–421
https://doi.org/10.1016/j.physe.2012.07.029
62 K F Mak, C Lee, J Hone, J Shan, T F Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, 105(13): 136805
https://doi.org/10.1103/PhysRevLett.105.136805
63 S Han, H Kwon, S K Kim, S Ryu, W S Yun, D H Kim, J H Hwang, J S Kang, J Baik, H J Shin, S C Hong. Band-gap transition induced by interlayer van der Waals interaction in MoS2. Physical Review. B, 2011, 84(4): 045409
https://doi.org/10.1103/PhysRevB.84.045409
64 A Ebnonnasir, B Narayanan, S Kodambaka, C V Ciobanu. Tunable MoS2 band gap in MoS2-graphene heterostructures. Applied Physics Letters, 2014, 105(3): 031603
https://doi.org/10.1063/1.4891430
65 H Peelaers, C G Van de Walle. Effects of strain on band structure and effective masses in MoS2. Physical Review. B, 2012, 86(24): 241401
https://doi.org/10.1103/PhysRevB.86.241401
66 A Lipatov, P Sharma, A Gruverman, A Sinitskii. Optoelectrical molybdenum disulfide (MoS2) ferroelectric memories. ACS Nano, 2015, 9(8): 8089–8098
https://doi.org/10.1021/acsnano.5b02078
67 T Cheiwchanchamnangij, W R Lambrecht. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Physical Review. B, 2012, 85(20): 205302
https://doi.org/10.1103/PhysRevB.85.205302
68 H Shi, H Pan, Y W Zhang, B I Yakobson. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Physical Review. B, 2013, 87(15): 155304
https://doi.org/10.1103/PhysRevB.87.155304
69 S Tongay, J Zhou, C Ataca, K Lo, T S Matthews, J Li, J C Grossman, J Wu. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Letters, 2012, 12(11): 5576–5580
https://doi.org/10.1021/nl302584w
70 R Scheer, H W Schock. Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices. John Wiley & Sons, 2011
71 A M Smith, S Nie. Semiconductor nanocrystals: structure, properties, and band gap engineering. Accounts of Chemical Research, 2010, 43(2): 190–200
https://doi.org/10.1021/ar9001069
72 H Zhang, W Zhou, Z Yang, S Wu, F Ouyang, H Xu. A first-principles study of impurity effects on monolayer MoS2: bandgap dominated by donor impurities. Materials Research Express, 2017, 4(12): 126301
https://doi.org/10.1088/2053-1591/aa9a82
73 S Kim, B Fisher, H J Eisler, M Bawendi. Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. Journal of the American Chemical Society, 2003, 125(38): 11466–11467
https://doi.org/10.1021/ja0361749
74 W Zhao, Y Liu, Z Wei, S Yang, H He, C Sun. Fabrication of a novel p–n heterojunction photocatalyst n-BiVO4@ p-MoS2 with core–shell structure and its excellent visible-light photocatalytic reduction and oxidation activities. Applied Catalysis B: Environmental, 2016, 185: 242–252
https://doi.org/10.1016/j.apcatb.2015.12.023
75 H Li, K Yu, X Lei, B Guo, H Fu, Z Zhu. Hydrothermal synthesis of novel MoS2/BiVO4 hetero-nanoflowers with enhanced photocatalytic activity and a mechanism investigation. Journal of Physical Chemistry C, 2015, 119(39): 22681–22689
https://doi.org/10.1021/acs.jpcc.5b06729
76 F Meng, J Li, S K Cushing, M Zhi, N Wu. Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. Journal of the American Chemical Society, 2013, 135(28): 10286–10289
https://doi.org/10.1021/ja404851s
77 K Ji, J Deng, H Zang, J Han, H Arandiyan, H Dai. Fabrication and high photocatalytic performance of noble metal nanoparticles supported on 3DOM InVO4–BiVO4 for the visible-light-driven degradation of rhodamine B and methylene blue. Applied Catalysis B: Environmental, 2015, 165: 285–295
https://doi.org/10.1016/j.apcatb.2014.10.005
78 W Ho, J C Yu, J Lin, J Yu, P Li. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir, 2004, 20(14): 5865–5869
https://doi.org/10.1021/la049838g
79 X Zong, H Yan, G Wu, G Ma, F Wen, L Wang, C Li. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. Journal of the American Chemical Society, 2008, 130(23): 7176–7177
https://doi.org/10.1021/ja8007825
80 H Xu, H Li, C Wu, J Chu, Y Yan, H Shu, Z Gu. Preparation, characterization and photocatalytic properties of Cu-loaded BiVO4. Journal of Hazardous Materials, 2008, 153(1–2): 877–884
https://doi.org/10.1016/j.jhazmat.2007.09.039
81 J Kang, H Sahin, F O M Peeters. Tuning carrier confinement in the MoS2/WS2 lateral heterostructure. Journal of Physical Chemistry C, 2015, 119(17): 9580–9586
https://doi.org/10.1021/acs.jpcc.5b00814
82 J Lahiri, Y Lin, P Bozkurt, I I Oleynik, M Batzill. An extended defect in graphene as a metallic wire. Nature Nanotechnology, 2010, 5(5): 326–329
https://doi.org/10.1038/nnano.2010.53
83 X Zou, Y Liu, B I Yakobson. Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Letters, 2013, 13(1): 253–258
https://doi.org/10.1021/nl3040042
84 A K Singh, B I Yakobson. Electronics and magnetism of patterned graphene nanoroads. Nano Letters, 2009, 9(4): 1540–1543
https://doi.org/10.1021/nl803622c
85 Z Hu, S Zhang, Y N Zhang, D Wang, H Zeng, L M Liu. Modulating the phase transition between metallic and semiconducting single-layer MoS2 and WS2 through size effects. Physical Chemistry Chemical Physics, 2015, 17(2): 1099–1105
https://doi.org/10.1039/C4CP04775C
86 J Kang, J Li, S S Li, J B Xia, L W Wang. Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Letters, 2013, 13(11): 5485–5490
https://doi.org/10.1021/nl4030648
87 L Zhang, E Drummond, M A Brodney, J Cianfrogna, S E Drozda, S Grimwood, M A Vanase-Frawley, A Villalobos. Design, synthesis and evaluation of [3H]PF-7191, a highly specific nociceptin opioid peptide (NOP) receptor radiotracer for in vivo receptor occupancy (RO) studies. Bioorganic & Medicinal Chemistry Letters, 2014, 24(22): 5219–5223
https://doi.org/10.1016/j.bmcl.2014.09.069
88 D Ghim, Q Jiang, S Cao, S Singamaneni, Y S Jun. Mechanically interlocked 1T/2H phases of MoS2 nanosheets for solar thermal water purification. Nano Energy, 2018, 53: 949–957
https://doi.org/10.1016/j.nanoen.2018.09.038
89 M R Hoffmann, S T Martin, W Choi, D W Bahnemann. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69–96
https://doi.org/10.1021/cr00033a004
90 A Fujishima, K Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
https://doi.org/10.1038/238037a0
91 Q Ding, B Song, P Xu, S Jin. Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds. Chem, 2016, 1(5): 699–726
https://doi.org/10.1016/j.chempr.2016.10.007
92 Q H Wang, K Kalantar-Zadeh, A Kis, J N Coleman, M S Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11): 699–712
https://doi.org/10.1038/nnano.2012.193
93 H I Karunadasa, E Montalvo, Y Sun, M Majda, J R Long, C J Chang. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science, 2012, 335(6069): 698–702
https://doi.org/10.1126/science.1215868
94 K Chang, M Li, T Wang, S Ouyang, P Li, L Liu, J Ye. Drastic layer-number-dependent activity enhancement in photocatalytic H2 evolution over nMoS2/CdS (n≥1) under visible light. Advanced Energy Materials, 2015, 5(10): 1402279
https://doi.org/10.1002/aenm.201402279
95 H Han, K M Kim, C W Lee, C S Lee, R C Pawar, J L Jones, Y R Hong, J H Ryu, T Song, S H Kang, H Choi, S Mhin. Few-layered metallic 1T-MoS2/TiO2 with exposed (001) facets: two-dimensional nanocomposites for enhanced photocatalytic activities. Physical Chemistry Chemical Physics, 2017, 19(41): 28207–28215
https://doi.org/10.1039/C7CP05523D
96 M C Hsiao, C Y Chang, L J Niu, F Bai, L J Li, H H Shen, J Y Lin, T W Lin. Ultrathin 1T-phase MoS2 nanosheets decorated hollow carbon microspheres as highly efficient catalysts for solar energy harvesting and storage. Journal of Power Sources, 2017, 345: 156–164
https://doi.org/10.1016/j.jpowsour.2017.01.132
97 C Hu, S Zheng, C Lian, F Chen, T Lu, Q Hu, S Duo, R Zhang, C Guan. α-S nanoparticles grown on MoS2 nanosheets: a novel sulfur-based photocatalyst with enhanced photocatalytic performance. Journal of Molecular Catalysis A Chemical, 2015, 396: 128–135
https://doi.org/10.1016/j.molcata.2014.09.033
98 Y Ding, Y Zhou, W Nie, P Chen. MoS2–GO nanocomposites synthesized via a hydrothermal hydrogel method for solar light photocatalytic degradation of methylene blue. Applied Surface Science, 2015, 357: 1606–1612
https://doi.org/10.1016/j.apsusc.2015.10.030
99 W Zhang, X Xiao, L Zheng, C Wan. Fabrication of TiO2/MoS2@ zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light. Applied Surface Science, 2015, 358: 468–478
https://doi.org/10.1016/j.apsusc.2015.08.054
100 C Zhu, L Zhang, B Jiang, J Zheng, P Hu, S Li, M Wu, W Wu. Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Applied Surface Science, 2016, 377: 99–108
https://doi.org/10.1016/j.apsusc.2016.03.143
101 S Kumar, A Baruah, S Tonda, B Kumar, V Shanker, B Sreedhar. Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/gC3N4 core-shell nanoplates with excellent visible-light responsive photocatalysis. Nanoscale, 2014, 6(9): 4830–4842
https://doi.org/10.1039/c3nr05271k
102 J Theerthagiri, R Senthil, A Malathi, A Selvi, J Madhavan, M Ashokkumar. Synthesis and characterization of a CuS–WO3 composite photocatalyst for enhanced visible light photocatalytic activity. RSC Advances, 2015, 5(65): 52718–52725
https://doi.org/10.1039/C5RA06512G
103 L Zhang, L Sun, S Liu, Y Huang, K Xu, F Ma. Effective charge separation and enhanced photocatalytic activity by the heterointerface in MoS2/reduced graphene oxide composites. RSC Advances, 2016, 6(65): 60318–60326
https://doi.org/10.1039/C6RA10923C
104 W K Jo, T Adinaveen, J J Vijaya, N C Sagaya Selvam. Synthesis of MoS2 nanosheet supported Z-scheme TiO2/gC3N4 photocatalysts for the enhanced photocatalytic degradation of organic water pollutants. RSC Advances, 2016, 6(13): 10487–10497
https://doi.org/10.1039/C5RA24676H
105 S Kumar, V Sharma, K Bhattacharyya, V Krishnan. Synergetic effect of MoS2–RGO doping to enhance the photocatalytic performance of ZnO nanoparticles. New Journal of Chemistry, 2016, 40(6): 5185–5197
https://doi.org/10.1039/C5NJ03595C
106 J Xia, Y Ge, D Zhao, J Di, M Ji, S Yin, H Li, R Chen. Microwave-assisted synthesis of few-layered MoS2/BiOBr hollow microspheres with superior visible-light-response photocatalytic activity for ciprofloxacin removal. CrystEngComm, 2015, 17(19): 3645–3651
https://doi.org/10.1039/C5CE00347D
107 C Wang, H Lin, Z Xu, H Cheng, C Zhang. One-step hydrothermal synthesis of flowerlike MoS2/CdS heterostructures for enhanced visible-light photocatalytic activities. RSC Advances, 2015, 5(20): 15621–15626
https://doi.org/10.1039/C4RA15632C
108 J Gamage, Z Zhang. Applications of photocatalytic disinfection. International Journal of Photoenergy, 2010, 764870
109 S Agnihotri, G Bajaj, S Mukherji, S Mukherji. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale, 2015, 7(16): 7415–7429
https://doi.org/10.1039/C4NR06913G
110 M J Hajipour, K M Fromm, A Akbar Ashkarran, D Jimenez de Aberasturi, I R Larramendi, T Rojo, V Serpooshan, W J Parak, M Mahmoudi. Antibacterial properties of nanoparticles. Trends in Biotechnology, 2012, 30(10): 499–511
https://doi.org/10.1016/j.tibtech.2012.06.004
111 K Sunada, T Watanabe, K Hashimoto. Studies on photokilling of bacteria on TiO2 thin film. Journal of Photochemistry and Photobiology A Chemistry, 2003, 156: 227–233
https://doi.org/10.1016/S1010-6030(02)00434-3
112 A Sirelkhatim, S Mahmud, A Seeni, N H M Kaus, L C Ann, S K M Bakhori, H Hasan, D Mohamad. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters, 2015, 7(3): 219–242
https://doi.org/10.1007/s40820-015-0040-x
113 G P Awasthi, S P Adhikari, S Ko, H J Kim, C H Park, C S Kim. Facile synthesis of ZnO flowers modified graphene like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties. Journal of Alloys and Compounds, 2016, 682: 208–215
https://doi.org/10.1016/j.jallcom.2016.04.267
114 W Liu, Y Feng, H Tang, H Yuan, S He, S Miao. Immobilization of silver nanocrystals on carbon nanotubes using ultra-thin molybdenum sulfide sacrificial layers for antibacterial photocatalysis in visible light. Carbon, 2016, 96: 303–310
https://doi.org/10.1016/j.carbon.2015.09.078
115 Y R Liu, W H Hu, X Li, B Dong, X Shang, G Q Han, Y M Chai, Y Q Liu, C G Liu. Facile one-pot synthesis of CoS2-MoS2/CNTs as efficient electrocatalyst for hydrogen evolution reaction. Applied Surface Science, 2016, 384: 51–57
https://doi.org/10.1016/j.apsusc.2016.05.007
116 M Q Wen, T Xiong, Z G Zang, W Wei, X S Tang, F Dong. Synthesis of MoS2/g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of nitric oxide (NO). Optics Express, 2016, 24(10): 10205–10212
https://doi.org/10.1364/OE.24.010205
117 Y J Yuan, J R Tu, Z J Ye, D Q Chen, B Hu, Y W Huang, T T Chen, D P Cao, Z T Yu, Z G Zou. MoS2-graphene/ZnIn2S4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: a highly efficient photocatalyst for solar hydrogen generation. Applied Catalysis B: Environmental, 2016, 188: 13–22
https://doi.org/10.1016/j.apcatb.2016.01.061
118 D E Powers, S G Hansen, M E Geusic, A C Puiu, J B Hopkins, T G Dietz, M A Duncan, P R R Langridge-Smith, R E Smalley. Supersonic metal cluster beams: laser photoionization studies of copper cluster (Cu2). Journal of Physical Chemistry, 1982, 86(14): 2556–2560
https://doi.org/10.1021/j100211a002
119 X Chen, S Shen, L Guo, S S Mao. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews, 2010, 110(11): 6503–6570
https://doi.org/10.1021/cr1001645
120 Y Xu, M A A Schoonen. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 2000, 85(3–4): 543–556
https://doi.org/10.2138/am-2000-0416
121 A B Laursen, S Kegnæs, S Dahl, I Chorkendorff. Molybdenum sulfides—efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy & Environmental Science, 2012, 5(2): 5577–5591
https://doi.org/10.1039/c2ee02618j
122 Y J Yuan, Z T Yu, Y H Li, H W Lu, X Chen, W G Tu, Z G Ji, Z G Zou. A MoS2/6,13-pentacenequinone composite catalyst for visible-light-induced hydrogen evolution in water. Applied Catalysis B: Environmental, 2016, 181: 16–23
https://doi.org/10.1016/j.apcatb.2015.07.030
123 Y J Yuan, Z J Ye, H W Lu, B Hu, Y H Li, D Q Chen, J S Zhong, Z T Yu, Z G Zou. Constructing anatase TiO2 nanosheets with exposed (001) facets/layered MoS2 two-dimensional nanojunctions for enhanced solar hydrogen generation. ACS Catalysis, 2016, 6(2): 532–541
https://doi.org/10.1021/acscatal.5b02036
124 Y R Liu, W H Hu, X Li, B Dong, X Shang, G Q Han, Y M Chai, Y Q Liu, C G Liu. One-pot synthesis of hierarchical Ni2P/MoS2 hybrid electrocatalysts with enhanced activity for hydrogen evolution reaction. Applied Surface Science, 2016, 383: 276–282
https://doi.org/10.1016/j.apsusc.2016.04.190
125 H Y He. Efficient hydrogen evolution activity of 1T-MoS2/Si-doped TiO2 nanotube hybrids. International Journal of Hydrogen Energy, 2017, 42(32): 20739–20748
https://doi.org/10.1016/j.ijhydene.2017.07.040
126 X B Li, Y J Gao, H L Wu, Y Wang, Q Guo, M Y Huang, B Chen, C H Tung, L Z Wu. Assembling metallic 1T-MoS2 nanosheets with inorganic-ligand stabilized quantum dots for exceptional solar hydrogen evolution. Chemical Communications, 2017, 53(41): 5606–5609
https://doi.org/10.1039/C7CC02366A
127 H Xu, J Yi, X She, Q Liu, L Song, S Chen, Y Yang, Y Song, R Vajtai, J Lou, H Li, S Yuan, J Wu, P M Ajayan. 2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 220: 379–385
https://doi.org/10.1016/j.apcatb.2017.08.035
128 P Du, Y Zhu, J Zhang, D Xu, W Peng, G Zhang, F Zhang, X Fan. Metallic 1T phase MoS2 nanosheets as a highly efficient co-catalyst for the photocatalytic hydrogen evolution of CdS nanorods. RSC Advances, 2016, 6(78): 74394–74399
https://doi.org/10.1039/C6RA10170D
129 Q Ding, F Meng, C R English, M Cabán-Acevedo, M J Shearer, D Liang, A S Daniel, R J Hamers, S Jin. Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2. Journal of the American Chemical Society, 2014, 136(24): 8504–8507
https://doi.org/10.1021/ja5025673
130 D Wang, B Su, Y Jiang, L Li, B K Ng, Z Wu, F Liu. Polytype 1T/2H MoS2 heterostructures for efficient photoelectrocatalytic hydrogen evolution. Chemical Engineering Journal, 2017, 330: 102–108
https://doi.org/10.1016/j.cej.2017.07.126
131 Q Xiang, J Yu, M Jaroniec. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2nanoparticles. Journal of the American Chemical Society, 2012, 134(15): 6575–6578
https://doi.org/10.1021/ja302846n
132 S S Chou, B Kaehr, J Kim, B M Foley, M De, P E Hopkins, J Huang, C J Brinker, V P Dravid. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angewandte Chemie, 2013, 125(15): 4254–4258
https://doi.org/10.1002/ange.201209229
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed