Please wait a minute...

Frontiers in Energy

Front. Energy    2019, Vol. 13 Issue (4) : 742-756     https://doi.org/10.1007/s11708-017-0462-x
RESEARCH ARTICLE
Novel power capture optimization based sensorless maximum power point tracking strategy and internal model controller for wind turbines systems driven SCIG
Ali EL YAAKOUBI1(), Kamal ATTARI1, Adel ASSELMAN1, Abdelouahed DJEBLI2
1. Optic and Photonic Team, Faculty of Sciences, Abdelmalek Essaaidi University, Tetouan 93002, Morocco
2. Energetics, Fluid Mechanics and Materials Laboratory, Abdelmalek Essaadi University, Tetouan 93002, Morocco
Download: PDF(1304 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Under the trends to using renewable energy sources as alternatives to the traditional ones, it is important to contribute to the fast growing development of these sources by using powerful soft computing methods. In this context, this paper introduces a novel structure to optimize and control the energy produced from a variable speed wind turbine which is based on a squirrel cage induction generator (SCIG) and connected to the grid. The optimization strategy of the harvested power from the wind is realized by a maximum power point tracking (MPPT) algorithm based on fuzzy logic, and the control strategy of the generator is implemented by means of an internal model (IM) controller. Three IM controllers are incorporated in the vector control technique, as an alternative to the proportional integral (PI) controller, to implement the proposed optimization strategy. The MPPT in conjunction with the IM controller is proposed as an alternative to the traditional tip speed ratio (TSR) technique, to avoid any disturbance such as wind speed measurement and wind turbine (WT) characteristic uncertainties. Based on the simulation results of a six KW-WECS model in Matlab/Simulink, the presented control system topology is reliable and keeps the system operation around the desired response.

Keywords power optimization      wind energy conversion system      maximum power point tracking (MPPT)      fuzzy logic      internal model (IM) controller     
Corresponding Authors: Ali EL YAAKOUBI   
Just Accepted Date: 10 February 2017   Online First Date: 22 March 2017    Issue Date: 26 December 2019
 Cite this article:   
Ali EL YAAKOUBI,Kamal ATTARI,Adel ASSELMAN, et al. Novel power capture optimization based sensorless maximum power point tracking strategy and internal model controller for wind turbines systems driven SCIG[J]. Front. Energy, 2019, 13(4): 742-756.
 URL:  
http://journal.hep.com.cn/fie/EN/10.1007/s11708-017-0462-x
http://journal.hep.com.cn/fie/EN/Y2019/V13/I4/742
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ali EL YAAKOUBI
Kamal ATTARI
Adel ASSELMAN
Abdelouahed DJEBLI
Fig.1  Wind energy conversion system
Fig.2  Mechanical power versus rotational speed of the WT
Fig.3  Maximum power point strategy searching
Fig.4  MPPT based on fuzzy logic strategy structure
Δ Ωr Δ Pr
NB NM NS Z PS PM PB
NB PB PB PM Z NM NB NB
NM PB PM PS Z NS NM NB
NS PM PS PS Z NS NS NM
Z NB NM NS Z PS PM PB
PS NM NS NS Z PS PS PM
PM NB NM NS Z PS PM PB
PB NB NB NS Z PS PB PB
Tab.1  Fuzzy logic rules
Fig.5  IM controller structure
Fig.6  System control of WECS
Parameters Value
k1 0.001
k2 0.001
k3 40
ar 1.3
asq 14
asd 16
Tab.2  Parameter of controllers
Parameters Value
Rated power/kW 6
Inertia turbine/(kg·m–2) 3
Inertia generator /(kg·m–2) 0.01
R/m 2.5
i 6.25
ρ 2
η 0.95
Rs/Rr 1.265/1.430
Ls/Lr 0.1452/0.1452
Lm/H 0.1397
Us/fs 220 V/50 Hz
wslip/(Rad·s–1) 100p
Tab.3  Parameters for (6 kW) WECS
Fig.7  Wind step and simulation results
Fig.8  Wind speed profile
Fig.9  Rotational speed estimated
Fig.10  Power coefficient
Fig.11  Mechanical power extracted
Fig.12  Electrical energy extracted
IAE ISE
PI controller 4.06 5.67
IM controller 3.78 4.23
Tab.4  Performance indices
Fig.13  Rotational speed obtained by the proposed and the PI controllers
A swept area of the WT
B gearbox ratio
i current
Jt the equivalent inertia of the WT and the generator
L inductance
p number of pole pair
R rotor WT radius
r resistance
s laplace operator
v voltage
z delay operator
Φ flux linkage
ω synchronous speed
Ω rotational speed
θ angle position
β Pitch angle
λ Tip speed ratio
Superscript
* set point
opt optimal value
Subscript
a,b and c three phase components
d d-axis
DC direct current
e electrical
g generator
gr grid
m mutual
q q-axis
r rotor
s stator
  
1 The Ministry of Energy. Mines, Water and Environment of Morocco (MEMWE) (2016). Press Release. 2016,
2 I Munteanu, A I Bratcu, E Ceangǎ. Wind turbulence used as searching signal for MPPT in variable-speed wind energy conversion systems. Renewable Energy, 2009, 34(1): 322–327
https://doi.org/10.1016/j.renene.2008.03.001
3 M Narayana, G A Putrus, M Jovanovic, P S Leung, S McDonald. Generic maximum power point tracking controller for small-scale wind turbines. Renewable Energy, 2012, 44: 72–79
https://doi.org/10.1016/j.renene.2011.12.015
4 A M Eltamaly, H M Farh. Maximum power extraction from wind energy system based on fuzzy logic control. Electric Power Systems Research, 2013, 97: 144–150
https://doi.org/10.1016/j.epsr.2013.01.001
5 H Zhao, Q Wu, C N Rasmussen, M Blanke. Adaptive speed control of a small wind energy conversion system for maximum power point tracking. IEEE Transactions on Energy Conversion, 2014, 29(3): 576–584
https://doi.org/10.1109/TEC.2014.2312978
6 A E Yaakoubi, A Asselman, A Djebli, E H Aroudam. A MPPT strategy based on fuzzy control for a wind energy conversion system. Procedia Technology, 2016, 22: 697–704
https://doi.org/10.1016/j.protcy.2016.01.145
7 T Senjyu, Y Ochi, Y Kikunaga, M Tokudome, A Yona, E B Muhando, N Urasaki, T Funabashi. Sensor-less maximum power point tracking control for wind generation system with squirrel cage induction generator. Renewable Energy, 2009, 34(4): 994–999
https://doi.org/10.1016/j.renene.2008.08.007
8 A Meharrar, M Tioursi, M Hatti, A Boudghène Stambouli. A variable speed wind generator maximum power tracking based on adaptative neuro-fuzzy inference system. Expert Systems with Applications, 2011, 38(6): 7659–7664
https://doi.org/10.1016/j.eswa.2010.12.163
9 C M Hong, C H Chen, C S Tu. Maximum power point tracking-based control algorithm for PMSG wind generation system without mechanical sensors. Energy Conversion and Management, 2013, 69: 58–67
https://doi.org/10.1016/j.enconman.2012.12.012
10 K H Kim, T L Van, D C Lee, S H Song, E H Kim. Maximum output power tracking control in variable-speed wind turbine systems considering rotor inertial power. IEEE Transactions on Industrial Electronics, 2013, 60(8): 3207–3217
https://doi.org/10.1109/TIE.2012.2200210
11 M Elnaggar, H A Abdel Fattah, A L Elshafei. Maximum power tracking in WECS (Wind energy conversion systems) via numerical and stochastic approaches. Energy, 2014, 74: 651–661
https://doi.org/10.1016/j.energy.2014.07.031
12 K Belmokhtar, M L Doumbia, K Agbossou. Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator). Energy, 2014, 76: 679–693
https://doi.org/10.1016/j.energy.2014.08.066
13 P Liu, W T Yang, C E Yang, C L Hsu. Sensorless wind energy conversion system maximum power point tracking using Takagi–Sugeno fuzzy cerebellar model articulation control. Applied Soft Computing, 2015, 29: 450–460
https://doi.org/10.1016/j.asoc.2015.01.019
14 C Huang, F Li, Z Jin. Maximum power point tracking strategy for large-scale wind generation systems considering wind turbine dynamics. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2530–2539
https://doi.org/10.1109/TIE.2015.2395384
15 M A Abdullah, A H M Yatim, C W Tan, R Saidur. A review of maximum power point tracking algorithms for wind energy systems. Renewable & Sustainable Energy Reviews, 2012, 16(5): 3220–3227
https://doi.org/10.1016/j.rser.2012.02.016
16 A M Eltamaly, A I Alolah, H M Farh. Maximum power extraction from utility-interfaced wind turbines. 2016-06,
17 M Nasiri, J Milimonfared, S H Fathi. Modeling, analysis and comparison of TSR and OTC methods for MPPT and power smoothing in permanent magnet synchronous generator-based wind turbines. Energy Conversion and Management, 2014, 86: 892–900
https://doi.org/10.1016/j.enconman.2014.06.055
18 Y Daili, J P Gaubert, L Rahmani. Implementation of a new maximum power point tracking control strategy for small wind energy conversion systems without mechanical sensors. Energy Conversion and Management, 2015, 97: 298–306
https://doi.org/10.1016/j.enconman.2015.03.062
19 Z M Dalala, Z H Zahid, J S Lai. New overall control strategy for small-scale WECS in MPPT and stall regions with mode transfer control. IEEE Transactions on Energy Conversion, 2013, 28(4): 1082–1092
https://doi.org/10.1109/TEC.2013.2287212
20 M N Uddin, N Patel. Maximum power point tracking control of IPMSG incorporating loss minimization and speed sensorless schemes for wind energy system. IEEE Transactions on Industry Applications, 2016, 52(2): 1902–1912
21 J Hussain, M K Mishra. Adaptive maximum power point tracking control algorithm for wind energy conversion systems. IEEE Transactions on Energy Conversion, 2016, 31(2): 697–705
https://doi.org/10.1109/TEC.2016.2520460
22 Q Zeng, L Chang, R Shao. Fuzzy-logic-based maximum power point tracking strategy for Pmsg variable-speed wind turbine generation systems. , 2008
23 S Chekkal, N A Lahaçani, D Aouzellag, K Ghedamsi. Fuzzy logic control strategy of wind generator based on the dual-stator induction generator. Electrical Power and Energy Systems, 2014, 59: 166–175
https://doi.org/10.1016/j.ijepes.2014.02.005
24 K Belmokhtar, M L Doumbia, K Agbossou. Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator). Energy, 2014, 76: 679–693
https://doi.org/10.1016/j.energy.2014.08.066
25 J Lee, Y S Kim. Sensorless fuzzy-logic-based maximum power point tracking control for a small-scale wind power generation systems with a switched-mode rectifier. IET Renewable Power Generation, 2016, 10(2): 194–202
26 J L Domínguez-García, O Gomis-Bellmunt, L Trilla-Romero, A Junyent-Ferré. Indirect vector control of a squirrel cage induction generator wind turbine. Computers & Mathematics with Applications (Oxford, England), 2012, 64(2): 102–114
https://doi.org/10.1016/j.camwa.2012.01.021
27 B Boukhezzar, H Siguerdidjane. Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization. Energy Conversion and Management, 2009, 50(4): 885–892
https://doi.org/10.1016/j.enconman.2009.01.011
28 Z Chen, J M Guerrero, F Blaabjerg. A review of the state of the art of power electronics for wind turbines. IEEE Transactions on Power Electronics, 2009, 24(8): 1859–1875
https://doi.org/10.1109/TPEL.2009.2017082
29 A Tamaarat, A Benakcha. Performance of PI controller for control of active and reactive power in DFIG operating in a grid-connected variable speed wind energy conversion system. Frontiers in Energy, 2014, 8(3): 371–378
https://doi.org/10.1007/s11708-014-0318-6
30 M Q Duong, F Grimaccia, S Leva, M Mussetta, E Ogliari. Pitch angle control using hybrid controller for all operating regions of SCIG wind turbine system. Renewable Energy, 2014, 70: 197–203
https://doi.org/10.1016/j.renene.2014.03.072
31 M Q Duong, F Grimaccia, S Leva, M Mussetta, K H Le. Improving transient stability in a grid-connected squirrel-cage induction generator wind turbine system using a fuzzy logic controller. Energies, 2015, 8(7): 6328–6349
https://doi.org/10.3390/en8076328
32 L A Zadeh. Fuzzy sets. Information and Control, 1965, 8(3): 338–353
https://doi.org/10.1016/S0019-9958(65)90241-X
33 O Anaya-Lara, D Campos-Gaona, E Moreno-Goytia, G Adam. Offshore Wind Energy Generation: Control, Protrction, and Integration to Electrical Systems. Hoboke: Wiley-Blackwell, 2014
Related articles from Frontiers Journals
[1] Ridha CHEIKH, Arezki MENACER, L. CHRIFI-ALAOUI, Said DRID. Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronous generator-based wind energy conversion system[J]. Front. Energy, 2020, 14(1): 180-191.
[2] P. PADMAGIRISAN, V. SANKARANARAYANAN. Powertrain control of a solar photovoltaic-battery powered hybrid electric vehicle[J]. Front. Energy, 2019, 13(2): 296-306.
[3] Alireza REZVANI, Ali ESMAEILY, Hasan ETAATI, Mohammad MOHAMMADINODOUSHAN. Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and RBFNSM for wind turbine in the grid connected mode[J]. Front. Energy, 2019, 13(1): 131-148.
[4] Himani,Ratna DAHIYA. Condition monitoring of a wind turbine generator using a standalone wind turbine emulator[J]. Front. Energy, 2016, 10(3): 286-297.
[5] S. SURENDER REDDY,Jae Young PARK,Chan Mook JUNG. Optimal operation of microgrid using hybrid differential evolution and harmony search algorithm[J]. Front. Energy, 2016, 10(3): 355-362.
[6] Abdelhak DIDA,Djilani BENATTOUS. A complete modeling and simulation of DFIG based wind turbine system using fuzzy logic control[J]. Front. Energy, 2016, 10(2): 143-154.
[7] Abdelhak DIDA,Djilani BEN ATTOUS. Doubly-fed induction generator drive based WECS using fuzzy logic controller[J]. Front. Energy, 2015, 9(3): 272-281.
[8] Nabil KAHOUL,Mourad HOUABES,Ammar NEÇAIBIA. A comprehensive simulator for assessing the reliability of a photovoltaic panel peak power tracking system[J]. Front. Energy, 2015, 9(2): 170-179.
[9] Najet REBEI,Ali HMIDET,Rabiaa GAMMOUDI,Othman HASNAOUI. Implementation of photovoltaic water pumping system with MPPT controls[J]. Front. Energy, 2015, 9(2): 187-198.
[10] Ammar NEÇAIBIA,Samir LADACI,Abdelfatah CHAREF,Jean Jacques LOISEAU. Fractional order extremum seeking approach for maximum power point tracking of photovoltaic panels[J]. Front. Energy, 2015, 9(1): 43-53.
[11] Y. K. BHATESHVAR,H. D. MATHUR,H. SIGUERDIDJANE. Impact of wind power generating system integration on frequency stabilization in multi-area power system with fuzzy logic controller in deregulated environment[J]. Front. Energy, 2015, 9(1): 7-21.
[12] Ramesh K GOVINDARAJAN,Pankaj Raghav PARTHASARATHY,Saravana Ilango GANESAN. A control scheme with performance prediction for a PV fed water pumping system[J]. Front. Energy, 2014, 8(4): 480-489.
[13] Akhil GUPTA,Saurabh CHANANA,Tilak THAKUR. THD reduction with reactive power compensation for fuzzy logic DVR based solar PV grid connected system[J]. Front. Energy, 2014, 8(4): 464-479.
[14] M. BENADJA,S. SAAD,A. BELHAMRA. Rapid transaction to load variations of active filter supplied by PV system[J]. Front. Energy, 2014, 8(3): 335-344.
[15] Azzouz TAMAARAT,Abdelhamid BENAKCHA. Performance of PI controller for control of active and reactive power in DFIG operating in a grid-connected variable speed wind energy conversion system[J]. Front. Energy, 2014, 8(3): 371-378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed