Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (4) : 2     https://doi.org/10.1007/s11783-016-0835-0
FEATURE ARTICLE |
A road-map for energy-neutral wastewater treatment plants of the future based on compact technologies (including MBBR)
Hallvard Ødegaard()
Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
Download: PDF(2126 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Guide   
Abstract

In the paper concepts for wastewater treatment of the future are discussed by the use of a) one flow diagram based on established, compact, proven technologies (i.e. nitrification/denitrification for N-removal in the mainstream) and b) one flow diagram based on emerging, compact technologies (i.e. de-ammonification in the main stream).The latter (b) will give an energy-neutral wastewater treatment plant, while this cannot be guaranteed for the first one (a). The example flow diagrams show plant concepts that a) minimize energy consumption by using compact biological and physical/chemical processes combined in an optimal way, for instance by using moving bed biofilm reactor (MBBR) processes for biodegradation and high-rate particle separation processes, and de-ammonification processes for N-removal and b)maximize energy (biogas) production through digestion by using wastewater treatment processes that minimize biodegradation of the sludge (prior to digestion) and pretreatment of the sludge prior to digestion by thermal hydrolysis. The treatment plant of the future should produce a water quality (for instance bathing water quality) that is sufficient for reuse of some kind (toilet flushing, urban use, irrigation etc.). The paper outlines compact water reclamation processes based on ozonation in combination with coagulation as pretreatment before ceramic membrane filtration.

In the paper concepts for domestic wastewater treatment plants of the future are discussed by the use of a) one flow diagram based on established, compact, proven technologies (i.e. nitrification/denitrification for N-removal in the mainstream) and b) one flow diagram based on emerging, compact technologies (i.e. de-ammonification in the main stream).The latter (b) will give an energy-neutral wastewater treatment plant, while this cannot be guaranteed for the first one (a). The example flow diagrams show plant concepts that a) minimize energy consumption by using compact biological and physical/chemical processes combined in an optimal way, for instance by using moving bed biofilm reactor (MBBR) processes for biodegradation and high-rate particle separation processes, and de-ammonification processes for N-removal and b)maximize energy (biogas) production through digestion by using wastewater treatment processes that minimize biodegradation of the sludge (prior to digestion) and pretreatment of the sludge prior to digestion by thermal hydrolysis. The treatment plant of the future should produce a water quality (for instance bathing water quality) that is sufficient for reuse of some kind (toilet flushing, urban use, irrigation etc.). The paper outlines compact water reclamation processes based on ozonation in combination with coagulation as pretreatment before ceramic membrane filtration.

Keywords China concept WWTP      Energy-neutrality      De-ammonification      moving bed biofilm reactor (MBBR)     
PACS:     
Fund: 
Corresponding Authors: Hallvard ?degaard   
Issue Date: 28 April 2016
 Cite this article:   
Hallvard ?degaard. A road-map for energy-neutral wastewater treatment plants of the future based on compact technologies (including MBBR)[J]. Front. Environ. Sci. Eng., 2016, 10(4): 2.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-016-0835-0
http://journal.hep.com.cn/fese/EN/Y2016/V10/I4/2
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hallvard ?degaard
Fig.1  Nitrogen transformation processes [6]
size range soluble<0.08 μm colloidal0.08 – 1.0 μm supra-colloidal1 – 100 μm settleable>100 μm
COD/(% of total)BOD/(% of total) 2531 1514 2624 3431
grease/(% of TS)protein carbohydrates 12458 51257 244511 192524
biochemicaloxidation rate/(d-1) 0.39 0.22 0.09 0.08
Tab.1  Fractionation of organic matter in wastewater – some early American studies [7,8]
Fig.2  Principle of the MBBR and examples of carriers
Fig.3  Example flow diagram based on compact, established and proven technologies
Fig.4  Example flow diagram based on de-ammonification for nitrogen removal in the main-stream
N n CODin mg·L-1 CODout mg·L-1 CODrem% BODin mg·L-1 BODout mg·L-1 BODrem.% Ref.
1990 investigation 87 531COD183BOD 418 99 73,4 167 27 80,9 ?degaard[19]
2002 investigation 88 778COD787BOD 366 90 75,5 135 33 75,7 Nedland [20]
Tab.2  Removal of organic matter in Norwegian coagulation plants (average values)
Fig.5  Extent of hydrolysis (Rp, %) of particulate COD being hydrolyzed to soluble COD as a function of biodegradable, filtered COD (BFCOD) load [21]
Fig.6  The removal rate of filtered(1 μm filtered) COD versus the concentration of filtered biodegradable COD [12]
Fig.7  Typical build-up of a combined pre- and post-denitrification MBBR [22]
Fig.8  Schematic of 1-stage nitritation/anammox biological processes occurring inside a carrier’s biofilm and anAnox?K5 carrier colonized with anammox bacteria
Fig.9  MBBR versus MBBR-based IFAS for de-ammonification [35]
Fig.10  Schematic of mainstream ANITATMMox WWTP (a) with carrier recycling concept betweenside-stream and main-stream ANITATMMox reactors and (b) with alternating feed concept betweenside-stream and main-stream water (after [38])
Fig.11  Removal of organic micro-pollutants by three different methods in the EAWAG study [44]
Fig.12  Treatment results for the full-scale ozonation plant of the city of Regensdorf, Switzerland [46]
Fig.13  The influence of ozone dose and coagulant dose on TMP-development in CMF [48]
1 Qu J, Wang K, Wang H, Yu G, Ke B, Yu H. Ideas for Building the Concept Wastewater Treatment Plants in China. In: Proceedings from DSD International Conference 2014 (DSDIC 2014), Hong Kong, 2014
2 Kroiss H, Svardal K.Energiebedarf von Abwasserreinigungsanlagen, Österreichische Wasser- und Abfallwirtschaft, 2009, 61(11–12): 170–177
3 Balmér P, Hellström D. Performance indicators for wastewater treatment plants. Water Science and Technology, 2012, 65(7): 1304–1310
https://doi.org/10.2166/wst.2012.014 pmid: 22437030
4 Stinson B, Murthy S, Bott C, Wett B, Al-Omari A, Bowden G, Mokhtari Y, De Clippeleir H. Roadmap Toward Energy Neutrality & Chemical Optimization at Enhanced Nutrient Removal Facilities. In: Proceedings of WEF/IWA Nutrient Removal and Recovery Conference, Vancouver, 2013
5 Wett B, Buchauer K, Fimml C. Energy self-sufficiency as a feasible concept for wastewater treatment systems. In: Proceedings of IWA Leading Edge Technology conference, Singapore, 2007
6 Nutrient Challenge W E R F. Deammonification, Water Environment Research Foundation (WERF) 2014,
7 Balmat J L. Biochemical oxidation of various particulate fractions of sewage. Sewage and Industrial Wastes, 1957, 29(7): 757
8 Heukelekian H, Balmat J L. Chemical composition of the particulate fractions of domestic sewage. Sewage and Industrial Wastes, 1959, 31(4): 413
9 Wang X, Jin P, Zhao H, Meng L. Classification of contaminants and treatability evaluation of domestic wastewater. Frontiers of Environmental Science & Engineering in China, 2007, 1(1): 57–62
https://doi.org/10.1007/s11783-007-0011-7
10 Melin E, Helness H, Ødegaard H. Dissolved air flotation of bioreactor effluent using low dosages of polymer and iron. In: Hahn H H, Hoffmann E, Ødegaard H, eds. Chemical Water and Wastewater Treatment VII. London: IWA Publishing, 2002, 261–272
11 Melin E, Helness H, Kenakkala T, Ødegaard H. High-rate wastewater treatment based on moving bed biofilm reactor, polymer coagulation and flotation. In: Hahn H H, Hoffmann E, Ødegaard H, eds. Chemical Water and Wastewater Treatment VIII. London: IWA Publishing, 2004, 39–48
12 Helness H, Melin E, Ulgenes Y, Järvinen P, Rasmussen V, Ødegaard H. High-rate wastewater treatment combining a moving bed biofilm reactor and enhanced particle separation. Water Science and Technology, 2005, 52(10–11): 117–127
pmid: 16459783
13 Ødegaard H. Sludge minimization technologies—an overview. Water Science and Technology, 2004, 49(10): 31–40
pmid: 15259935
14 Barlindhaug J, Ødegaard H. Thermal hydrolysate as a carbon source for denitrification. Water Science and Technology, 1996, 33(12): 99–108
https://doi.org/10.1016/0273-1223(96)00463-5
15 Ødegaard H, Rusten B, Westrum T. A new moving bed biofilm reactor—Applications and results. Water Science and Technology, 1994, 29(10–11): 157–165
16 Ødegaard H. Compact wastewater treatment with MBBR. In: Proceedings International DSD Conference on Sustainable Stormwater and Wastewater Management, Hong Kong, 2014
17 Christensson M. Moving on with MBBR. In: Proceedings WEF/IWA Conference on Nutrient Recovery and Management, Miami, 2011
18 Ødegaard H, Gisvold B, Strickland J. The influence of carrier size and shape in the moving bed biofilm process. Water Science and Technology, 2000, 41(4–5): 383–392
19 Ødegaard H. Norwegian experiences with chemical treatment of raw wastewater. Water Science and Technology, 1992, 25(12): 255–264
20 Nedland K T. Personal communication, 2002
21 Helness H, Sjøvold F. Degradation of particulate organic matter in a moving bed biofilm reactor. SINTEF report STF66 F01104, 2001, SINTEF, Trondheim, Norway (restricted)
22 Ødegaard H, Rusten B, Wessman F. State of the art in Europe of the moving bed biofilm reactor (MBBR) process. In: Proceedings WEFTEC Conference, New Orleans, 2004
23 Hem L, Rusten B, Ødegaard H. Nitrification in a moving bed biofilm reactor. Water Research, 1994, 28(6): 1425–1433
https://doi.org/10.1016/0043-1354(94)90310-7
24 Rusten B, Hem L, Ødegaard H. Nitrification of municipal wastewater in novel moving bed biofilm reactors. Water Environment Research, 1995, 67(1): 75–86
https://doi.org/10.2175/106143095X131213
25 Rusten B, Hem L, Ødegaard H. Nitrogen removal from dilute wastewater in cold climate using novel moving bed biofilm reactors. Water Environment Research, 1995, 67(1): 65–74
https://doi.org/10.2175/106143095X131204
26 Rusten B, Paulsrud B. Environmental technology verification of a biofilm process for high efficiency nitrogen removal from wastewater. In: CD Proceedings of the WEFTEC 2009, Orlando, 2009, 4378–4391.
27 Rosenwinkel K, Cornelius A. Deammonification in the Moving-Bed Process for the Treatment of Wastewater with High Ammonia Content. Chemical Engineering & Technology, 2005, 28(1): 49–52
https://doi.org/10.1002/ceat.200407070
28 Jardin N, Hennerkes J. Full-scale experience with the deammonification process to treat high strength sludge water — a case study. Water Science and Technology, 2012, 65(3): 447–455
https://doi.org/10.2166/wst.2012.867 pmid: 22258674
29 Christensson M, Ekström S, Andersson Chan A, Le Vaillant E, Lemaire R. Experience from start-ups of the first ANITA Mox plants. Water Science and Technology, 2013, 67(12): 2677–2684
https://doi.org/10.2166/wst.2013.156 pmid: 23787303
30 Cema G. Comparative study on different Anammox systems. PhD Thesis, KTH, Royal Institute of Technology, Stockholm, 2009.
31 Cema G, Trela J, Plaza E, Surmacz-Górska J. Partial nitritation/Anammox process—from two-step towards one-step process. In: Proceedings IWA World Water Congress, Montreal, 2010
32 Fernández I, Dosta J, Fajardo C, Campos J L, Mosquera-Corral A, Méndez R. Short- and long-term effects of ammonium and nitrite on the Anammox process. Journal of Environmental Management, 2012, 95(Suppl1): S170–S174
https://doi.org/10.1016/j.jenvman.2010.10.044 pmid: 21074312
33 Lotti T, van der Star W R L, Kleerebezem R, Lubello C, van Loosdrecht M C M. The effect of nitrite inhibition on the anammox process. Water Research, 2012, 46(8): 2559–2569
https://doi.org/10.1016/j.watres.2012.02.011 pmid: 22424965
34 Plaza E. Personal communication, 2015
35 Veuillet F, Lacroix S, Bausseron A, Gonidec E, Ochoa J, Christensson M, Lemaire R. IFAS ANITA™Mox process—A new perspective for advanced N-removal. In: Proceedings of 9th IWA conference on Biofilm Reactors, Paris, 2013
36 Veuillet F, Bausseron A, Gonidec E, Chastrusse S, Christensson M, Lemaire R, Ochoa J. ANITA™Mox Deammonification Process: Possibility to Handle High COD Level Using the IFAS Configuration. In: Proceedings of IWA Water Congress & Exhibition, Lisbon, 2014
37 Trela J, Malovanyy A, Yang J, Plaza E, Trojanowicz K, Sultana R, Wilén B M, Persson F, Baresel C. De-ammonification. Synthesis report 2014 R&D at Hammarby Sjöstadsverk. IVL-report No. B 2210 2014.
38 Lemaire R, Veuillet F, Zozor P, Stefansdottir D, Christensson M, Skonieczny T, Ochoa J. Mainstream deammonification using ANITA™Mox Process. In: Proceedings IWA conference on Nutrient Removal and Recovery, Gdansk, Poland, 2015
39 Malovanyy A, Yang J, Trela J, Plaza E. Combination of UASB reactor and partial nitritation/Anammox MBBR for municipal wastewater treatment. Bioresource Technology, 2015, 180: 144–153
https://doi.org/10.1016/j.biortech.2014.12.101 pmid: 25600011
40 Piculell M, Christensson M, Jönsson K, Welander T. Partial nitrification in MBBRs for mainstream deammonification with thin biofilms and alternating feed supply. Water Science and Technology, 2016, 73(6): 1253–1260
41 Falås P, Baillon-Dhumez A, Andersen H R, Ledin A, la Cour Jansen J. Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals. Water Research, 2012, 46(4): 1167–1175
https://doi.org/10.1016/j.watres.2011.12.003 pmid: 22209263
42 Falås P, Longrée P, la Cour Jansen J, Siegrist H, Hollender J, Joss A. Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process. Water Research, 2013, 47(13): 4498–4506
https://doi.org/10.1016/j.watres.2013.05.010 pmid: 23764599
43 Ødegaard H, Cimbritz M, Christensson M, Dahl P C. Separation of biomass from moving bed biofilm reactors (MBBRs). In: Proceedings WEF/IWA Biofilm Reactor Technology Conference, Portland, 2010
44 Abegglen C, Joss A, Siegrist H. Spurenstoffe eliminieren: Kläranlagentechnik. Eawag News, 2009, 67: 25–27
45 EAWAG. Ozonung von gereinigtem Abwasser, Schlussbericht Pilotversuch Regensdorf. EAWAG, Dübendorf, Switzerland, 2009.
46 Hollender J, Zimmermann S G, Koepke S, Krauss M, McArdell C S, Ort C, Singer H, von Gunten U, Siegrist H. Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration. Environmental Science & Technology, 2009, 43(20): 7862–7869
https://doi.org/10.1021/es9014629 pmid: 19921906
47 Gimbel R, Panglisch S, Loi-Bruegger A, Hobby R, Lerch A, Strugholtz S. New Approaches in Particle Separation with UF/MF—Membranes in Water Treatment. In: Proceedings IWA conference on Particle Separation, Toulouse, 2007
48 Noguchi M. Application of MF ceramic membrane for water reclamation. In: Proceedings of 1st. Nagasaki University Membrane Workshop, Nagasaki, 2015
49 Liao Z, Panter K, Mills N, Huang O, Kleiven M, Yang X. Thermal hydrolysis pre-treatment for advanced anaerobic digestion for sludge treatment and disposal in large scale projects. In: Proceedings of International DSD Conference on Sustainable Stormwater and Wastewater Management, Hong Kong, 2014.
50 Panter K, Liao Z. Personal communication, 2015
Related articles from Frontiers Journals
[1] Ying Xu, Ning-Yi Zhou. Microbial remediation of aromatics-contaminated soil[J]. Front. Environ. Sci. Eng., 2017, 11(2): 1-.
[2] Xiaorong Meng, Shanshan Huo, Lei Wang, Xudong Wang, Yongtao Lv, Weiting Tang, Rui Miao, Danxi Huang. Effect of electrokinetic property of charged polyether sulfone membrane on bovine serum albumin fouling behavior[J]. Front. Environ. Sci. Eng., 2017, 11(2): 2-.
[3] Weiman Li, Haidi Liu, Yunfa Chen. Promotion of transition metal oxides on the NH3-SCR performance of ZrO2-CeO2 catalyst[J]. Front. Environ. Sci. Eng., 2017, 11(2): 6-.
[4] Mingkai Zhang, He Jing, Yanchen Liu, Hanchang Shi. Estimation and optimization operation in dealing with inflow and infiltration of a hybrid sewerage system in limited infrastructure facility data[J]. Front. Environ. Sci. Eng., 2017, 11(2): 7-.
[5] Xiuhong Liu, Hongchen Wang, Qing Yang, Jianmin Li, Yuankai Zhang, Yongzhen Peng. Online control of biofilm and reducing carbon dosage in denitrifying biofilter: pilot and full-scale application[J]. Front. Environ. Sci. Eng., 2017, 11(1): 4-.
[6] Jiuxiao Hao, Xiujin Wang, Hui Wang. Investigation of polyhydroxyalkanoates (PHAs) biosynthesis from mixed culture enriched by valerate-dominant hydrolysate[J]. Front. Environ. Sci. Eng., 2017, 11(1): 5-.
[7] Si-Yu Zhang, Paul N. Williams, Jinming Luo, Yong-Guan Zhu. Microbial mediated arsenic biotransformation in wetlands[J]. Front. Environ. Sci. Eng., 2017, 11(1): 1-.
[8] Sheng Huang, Xin Zhao, Yanqiu Sun, Jianli Ma, Xiaofeng Gao, Tian Xie, Dongsheng Xu, Yi Yu, Youcai Zhao. Pollution of hazardous substances in industrial construction and demolition wastes and their multi-path risk within an abandoned pesticide manufacturing plant[J]. Front. Environ. Sci. Eng., 2017, 11(1): 12-.
[9] Ran Yu, Shiwen Zhang, Zhoukai Chen, Chuanyang Li. Isolation and application of predatory Bdellovibrio-and-like organisms for municipal waste sludge biolysis and dewaterability enhancement[J]. Front. Environ. Sci. Eng., 2017, 11(1): 10-.
[10] Yang Li, Lei Shi, Yi Qian, Jie Tang. Diffusion of municipal wastewater treatment technologies in China: a collaboration network perspective[J]. Front. Environ. Sci. Eng., 2017, 11(1): 11-.
[11] Rui Lu, Wei Chen, Wen-Wei Li, Guo-Ping Sheng, Lian-Jun Wang, Han-Qing Yu. Probing the redox process of p-benzoquinone in dimethyl sulphoxide by using fluorescence spectroelectrochemistry[J]. Front. Environ. Sci. Eng., 2017, 11(1): 14-.
[12] Chunhao Dai, Pufeng Qin, Zhangwei Wang, Jian Chen, Xianshan Zhang, Si Luo. Mercury enrichment in Brassica napus in response to elevated atmospheric mercury concentrations[J]. Front. Environ. Sci. Eng., 2017, 11(1): 2-.
[13] Shejiang Liu, Hongyang Yang, Yongkui Yang, Yupeng Guo, Yun Qi. Novel coprecipitation–oxidation method for recovering iron from steel waste pickling liquor[J]. Front. Environ. Sci. Eng., 2017, 11(1): 9-.
[14] Yun Zhou, Siqing Xia, Binh T. Nguyen, Min Long, Jiao Zhang, Zhiqiang Zhang. Interactions between metal ions and the biopolymer in activated sludge: quantification and effects of system pH value[J]. Front. Environ. Sci. Eng., 2017, 11(1): 7-.
[15] Mengchuan Shui, Feng Ji, Rui Tang, Shoujun Yuan, Xinmin Zhan, Wei Wang, Zhenhu Hu. Impact of roxarsone on the UASB reactor performance and its degradation[J]. Front. Environ. Sci. Eng., 2016, 10(6): 4-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed