Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (5) : 939-947
Iron-carbon composite microspheres prepared through a facile aerosol-based process for the simultaneous adsorption and reduction of chlorinated hydrocarbons
Bhanukiran SUNKARA1,Yang SU1,Jingjing ZHAN1,Jibao HE3,Gary L. MCPHERSON3,Vijay T. JOHN1,*()
1. Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
2. Coordinated Instrumentation Facility, Tulane University, New Orleans, LA 70118, USA
3. Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
Download: PDF(1450 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Iron-carbon (Fe-C) composite microspheres prepared through a facile aerosol-based process are effective remediation agents for the simultaneous adsorption and reduction of chlorinated hydrocarbons. Complete dechlorination was achieved for the class of chlorinated ethenes that include tetrachloroethylene (PCE), trichloroethylene (TCE), cis- and trans-1,2-dicloroethylene (c-DCE, t-DCE), 1,1-dichloroethylene (1,1-DCE) and, vinyl chloride (VC). The Fe-C particles potentially provides multi-functionality with requisite characteristics of adsorption, reaction, and transport for the effective in situ remediation of chlorinated hydrocarbons. The carbon support immobilizes the ferromagnetic iron nanoparticles onto its surface, thereby inhibiting aggregation. The adsorptive nature of the carbon support prevents the release of toxic intermediates such as the dichloroethylenes and vinyl chloride. The adsorption of chlorinated ethenes on the Fe-C composites is higher (>80%) than that of humic acid (<35%) and comparable to adsorption on commercial activated carbons (>90%). The aerosol-based process is an efficient method to prepare adsorptive-reactive composite particles in the optimal size range for transport through the porous media and as effective targeted delivery agents for the in situ remediation of soil and groundwater contaminants.

Keywords chlorinated ethene      iron-carbon      aerosol      adsorption      reductive dechlorination     
Corresponding Author(s): Vijay T. JOHN   
Online First Date: 20 July 2015    Issue Date: 12 October 2015
 Cite this article:   
Yang SU,Jingjing ZHAN,Jibao HE, et al. Iron-carbon composite microspheres prepared through a facile aerosol-based process for the simultaneous adsorption and reduction of chlorinated hydrocarbons[J]. Front. Environ. Sci. Eng., 2015, 9(5): 939-947.
E-mail this article
E-mail Alert
Articles by authors
Yang SU
Jingjing ZHAN
Jibao HE
Bhanukiran SUNKARA
Vijay T. JOHN
Fig.1  (a) Schematic showing the aerosol process for composite particles synthesis and (b) schematic of reaction in an aerosol droplet
Fig.2  (a) SEM (b) TEM and (c) High resolution TEM of Fe-C composite particles prepared by the aerosol-based process. The inset in Fig. 2(a) is the single particle SEM of the Fe-C composite
chlorinated ethylene abbreviation, formula kobs (apparent reaction rate constant) /h−1 km,obs (mass-normalized reaction rate constant) /(L·h−1·g−1)
tetrachloroethene PCE, C2Cl4 0.895 0.358
trichloroethene TCE, C2HCl3 1.101 0.441
1,2-dichloroethene (mixture of cis- and trans-) 1,2-DCE, C2H2Cl2 1.145 0.458
1,1-dichloroethene 1,1-DCE, C2H2Cl2 1.328 0.531
vinyl chloride VC, C2H3Cl 2.4709 0.988
Tab.1  Observed overall reaction rate constants for reduction of the various chlorinated ethenes using the aerosol-based Fe-C composite particles
Fig.3  Representative headspace analyses using gas chromatography showing (a) PCE and (b) TCE degradation and reaction product evolution at various reaction times
Fig.4  (a) PCE and (b) TCE removal from solution and gas product evolution rates for Fe-C composites. M/M0 is the fraction of the original chlorinated ethylene remaining and P/Pf is the ratio of the gas product peak to the gas product peak at the end of reaction. The initial sharp decrease of the chlorinated ethylene (PCE, TCE) peak is due to the strong adsorption of carbon in the Fe-C composite. The subsequent slow evolution of gas phase dechlorination products indicates that the dechlorination of the chlorinated ethene is responsible for the second, slower step in the coupled adsorption and reaction sequence. km,obs is the mass normalized rate constant based on the mass of zerovalent iron
Fig.5  Reaction kinetics of the intermediate chlorinated ethenes (a) 1,2-DCE, (b) 1,1-DCE, and (c) VC. M/M0 is the fraction of the original chlorinated ethene remaining and P/Pf is the ratio of the gas product peak to the gas product peak at the end of reaction. The initial sharp decrease of the chlorinated ethene (1,2-DCE, 1,1-DCE and VC) peak is due to the strong adsorption of carbon in the Fe-C composite. The subsequent slow evolution of gas phase dechlorination products indicates that the dechlorination of the chlorinated ethene is responsible for the second, slower step in the coupled adsorption and reaction sequence. km,obs is the mass normalized rate constant based on the mass of zerovalent iron
Fig.6  Comparison of adsorption capacities of humic acid, Fe salt-C from the aerosol-based process and commercial activated carbon. In all experiments, 20 mL of a 20 ppm chlorinated ethylene ((a) PCE, (b) TCE, (c) 1,2-DCE, (d) 1,1-DCE, and (e) VC) solution and 0.2g of particles were used. The adsorption capacity was measured 5 min after the addition of particles to the chlorinated ethene solution. The results show that the adsorption of chlorinated ethenes on aerosol based iron-carbon composites is higher than that of humic acid and is comparable to the adsorption on commercially available granular and irregularly defined activated carbons
chlorinated ethene partition coefficient (Kp) aerosol Fe salt-C
tetrachloroethylene 898
trichloroethylene 1897
cis- 1,2-dichloroethylene 5927
trans- 1,2-dichloroethylene 3057
1, 1-dichloroethylene 4536
vinyl chloride 145
Tab.2  Calculated partition coefficient of chlorinated hydrocarbons adsorption on aerosol-based Fe salt-C composites
1 Matheson  L J, Tratnyek  P G. Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology, 1994, 28(12): 2045–2053 pmid: 22191743
2 Orth  W S, Gillham  R W. Dechlorination of trichloroethene in aqueous solution using Fe0. Environmental Science & Technology, 1996, 30(1): 66–71
3 Doong  R A, Chen  K T, Tsai  H C. Reductive dechlorination of carbon tetrachloride and tetrachloroethylene by zerovalent silicon-iron reductants. Environmental Science & Technology, 2003, 37(11): 2575–2581 pmid: 12831046
4 Lowry  G, Reinhard  M. Pd-catalyzed TCE dechlorination in groundwater: solute effects, biological control, and oxidative catalyst regeneration. Environmental Science & Technology, 2000, 34(15): 3217–3223
5 Schrick  B, Blough  J L, Jones  A D, Mallouk  T E. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chemistry of Materials, 2002, 14(12): 5140–5147
6 Liu  Y, Majetich  S A, Tilton  R D, Sholl  D S, Lowry  G V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 2005, 39(5): 1338–1345 pmid: 15787375
7 Liu  Y, Choi  H, Dionysiou  D, Lowry  G V. Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chemistry of Materials, 2005, 17(21): 5315–5322
8 Elliott  D W, Zhang  W X. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology, 2001, 35(24): 4922–4926 pmid: 11775172
9 Zheng  T, Zhan  J, He  J, Day  C, Lu  Y, McPherson  G L, Piringer  G, John  V T. Reactivity characteristics of nanoscale zerovalent iron—silica composites for trichloroethylene remediation. Environmental Science & Technology, 2008, 42(12): 4494–4499 pmid: 18605576
10 O’Carroll  D, Sleep  B, Krol  M, Boparai  H, Kocur  C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 2013, 51: 104–122
11 Phenrat  T, Saleh  N, Sirk  K, Tilton  R D, Lowry  G V. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 2007, 41(1): 284–290 pmid: 17265960
12 Schrick B, Hydutsky B W, Blough J L, Mallouk T E. Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 2004, 16(11): 2187–2193
13 He  F, Zhao  D. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science & Technology, 2005, 39(9): 3314–3320 pmid: 15926584
14 Phenrat  T, Saleh  N, Sirk  K, Kim  H J, Tilton  R D, Lowry  G V. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research, 2008, 10(5): 795–814
15 He  F, Zhao  D, Liu  J, Roberts  C B. Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemistry Research, 2007, 46(1): 29–34
16 He  F,  Zhao  D.  Manipulating the  size  and  dispersibility  of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science & Technology, 2007, 41(17): 6216–6221 pmid: 17937305
17 Quinn  J, Geiger  C, Clausen  C, Brooks  K, Coon  C, O’Hara  S, Krug  T, Major  D, Yoon  W S, Gavaskar  A, Holdsworth  T. Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science & Technology, 2005, 39(5): 1309–1318 pmid: 15787371
18 Saleh  N, Phenrat  T, Sirk  K, Dufour  B, Ok  J, Sarbu  T, Matyjaszewski  K, Tilton  R D, Lowry  G V. Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 2005, 5(12): 2489–2494 pmid: 16351201
19 Zhan  J, Sunkara  B, Le  L, John  V T, He  J, McPherson  G L, Piringer  G, Lu  Y. Multifunctional colloidal particles for in situ remediation of chlorinated hydrocarbons. Environmental Science & Technology, 2009, 43(22): 8616–8621 pmid: 20028061
20 Sunkara  B, Zhan  J, He  J, McPherson  G L, Piringer  G, John  V T. Nanoscale zerovalentiron supported on uniform carbon microspheres for the in situ remediation of chlorinated hydrocarbons. ACS Applied Materials & Interfaces, 2010, 2(10): 2854–2862
21 Zhan  J, Kolesnichenko  I, Sunkara  B, He  J, McPherson  G L, Piringer  G, John  V T. Multifunctional iron-carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons. Environmental Science & Technology, 2011, 45(5): 1949–1954 pmid: 21299241
22 Sunkara  B, Zhan  J, Kolesnichenko  I, Wang  Y, He  J, Holland  J E, McPherson  G L, John  V T. Modifying metal nanoparticle placement on carbon supports using an aerosol-based process, with application to the environmental remediation of chlorinated hydrocarbons. Langmuir, 2011, 27(12): 7854–7859 pmid: 21612244
23 Zhan  J, Sunkara  B, Tang  J, Wang  Y, He  J, McPherson  G L, John  V T. Carbothermalsynthesis of aerosol-based adsorptive-reactive iron–carbon particles for the remediation of chlorinated hydrocarbons. Industrial & Engineering Chemistry Research, 2011, 50(23): 13021–13029
24 Zhan  J, Zheng  T, Piringer  G, Day  C, McPherson  G L, Lu  Y, Papadopoulos  K, John  V T. Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environmental Science & Technology, 2008, 42(23): 8871–8876 pmid: 19192811
25 Bleyl  S, Kopinke  F D, Georgi  A, Mackenzie  K. Carbo-iron—atailored reagent for in situ groundwater remediation. Chemieingenieurtechnik (Weinheim), 2013, 85: 1302–1311
26 Busch  J, Meißner  T, Potthoff  A, Oswald  S E. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media. Journal of Contaminant Hydrology, 2014, 164: 25–34 pmid: 24914524
27 Mackenzie  K, Bleyl  S, Georgi  A, Kopinke  F D. Carbo-iron—an Fe/AC composite—as alternative to nano-iron for groundwater treatment. Water Research, 2012, 46(12): 3817–3826 pmid: 22591820
28 Lien  H L, Zhang  W. Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2001, 191(1–2): 97–105
29 Muftikian  R, Fernando  Q, Korte  N. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Water Research, 1995, 29(10): 2434–2439
30 Nyer  E K, Vance  D B. Nano-scale iron for dehalogenation. Ground Water Monitoring and Remediation, 2001, 2(2): 41–46
31 Wang  C, Zhang  W. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 1997, 31(7): 2154–2156
32 Hess  D R. Nebulizers: principles and performance. Respiratory Care, 2000, 45(6): 609–622
pmid: 10894454
33 Phenrat  T, Liu  Y, Tilton  R D, Lowry  G V. Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: conceptual model and mechanisms. Environmental Science & Technology, 2009, 43(5): 1507–1514 pmid: 19350927
34 Gossett  J M. Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons. Environmental Science & Technology, 1987, 21(2): 202–208
Related articles from Frontiers Journals
[1] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[2] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[3] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[4] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[5] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[6] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[7] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[8] Youfang Chen, Yimin Zhou, Xinyi Zhao. PM2.5 over North China based on MODIS AOD and effect of meteorological elements during 2003‒2015[J]. Front. Environ. Sci. Eng., 2020, 14(2): 23-.
[9] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[10] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
[11] Hongqi Wang, Ruhan Jiang, Dekang Kong, Zili Liu, Xiaoxiong Wu, Jie Xu, Yi Li. Transmembrane transport of polycyclic aromatic hydrocarbons by bacteria and functional regulation of membrane proteins[J]. Front. Environ. Sci. Eng., 2020, 14(1): 9-.
[12] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[13] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
[14] Qinghao Jin, Chenyang Cui, Huiying Chen, Jing Wu, Jing Hu, Xuan Xing, Junfeng Geng, Yanhong Wu. Effective removal of Cd2+ and Pb2+ pollutants from wastewater by dielectrophoresis-assisted adsorption[J]. Front. Environ. Sci. Eng., 2019, 13(2): 16-.
[15] Zhen Li, Zhaofu Qiu, Ji Yang, Benteng Ma, Shuguang Lu, Chuanhui Qin. Investigation of phosphate adsorption from an aqueous solution using spent fluid catalytic cracking catalyst containing lanthanum[J]. Front. Environ. Sci. Eng., 2018, 12(6): 15-.
Full text