Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (6) : 1076-1083     https://doi.org/10.1007/s11783-015-0770-5
RESEARCH ARTICLE
Combined process of biofiltration and ozone oxidation as an advanced treatment process for wastewater reuse
Xinwei LI1,2,Hanchang SHI1,*(),Kuixiao LI2,Liang ZHANG2
1. School of Environment, Tsinghua University, Beijing 100084, China
2. Beijing Drainage Group Co. Ltd., Beijing 100044, China
Download: PDF(398 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effluent of a wastewater treatment plant was treated in a pilot plant for reclaimed water production through the denitrification biofilter (DNBF) process, ozonation (O3), and biologic aerated filtration (BAF). The combined process demonstrated good removal performance of conventional pollutants, including concentrations of chemical oxygen demand (27.8 mg·L−1) and total nitrogen (9.9 mg·L−1) in the final effluent, which met the local discharge standards and water reuse purposes. Micropollutants (e.g., antibiotics and endocrine-disrupting chemicals) were also significantly removed during the proposed process. Ozonation exhibited high antibiotic removal efficiencies, especially for tetracycline (94%). However, micropollutant removal efficiency was negatively affected by the nitrite produced by DNBF. Acute toxicity variations of the combined process were estimated by utilizing luminescent bacteria. Inhibition rate increased from 9% to 15% during ozonation. Carbonyl compound concentrations (e.g., aldehydes and ketones) also increased by 58% as by-products, which consequently increased toxicity. However, toxicity eventually became as low as that of the influent because the by-products were effectively removed by BAF. The combined DNBF/O3/BAF process is suitable for the advanced treatment of reclaimed water because it can thoroughly remove pollutants and toxicity.

Keywords wastewater treatment      micropollutant removal      ozonation      biofiltration      toxicity     
Corresponding Author(s): Hanchang SHI   
Online First Date: 08 January 2015    Issue Date: 23 November 2015
 Cite this article:   
Xinwei LI,Hanchang SHI,Kuixiao LI, et al. Combined process of biofiltration and ozone oxidation as an advanced treatment process for wastewater reuse[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1076-1083.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-015-0770-5
http://journal.hep.com.cn/fese/EN/Y2015/V9/I6/1076
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xinwei LI
Hanchang SHI
Kuixiao LI
Liang ZHANG
parameters /(mg·L−1) COD TOC TN N H 4 + -N N O 2 -N N O 3 -N TP SS
secondary effluent 30–40 8–11 25–30 0.3–1.5 0–0.3 22–28 0.3–0.5 8–12
reuse standards as scenic water 15 5 0.5 10
local discharge standards 30 15 1.5 0.3 5
Tab.1  Secondary effluents quality of Gaobeidian WWTP and standards for discharge and scenic environment reuse
Fig.1  Process of the advanced wastewater treatment
Fig.2  Variations of COD and TOC during advanced treatment (SE: secondary effluent, DNBF-IN: influent of DNBF, DNBF-E: effluent of DNBF, O3-E: effluent of ozonation, BAF-E: effluent of BAF)
Fig.3  Variations of nitrogen compounds during advanced treatment
Fig.4  Concentrations of antibiotics in each unit of advanced treatment
Fig.5  Concentrations of EDCs in each unit of advanced treatment
Fig.6  Variations of inhibition rate on V. fischeri and concentration of carbonyl compounds
Fig.7  Antibiotics removal efficiency under different ozone dosage
1 Bdour  A N, Hamdi  M R, Tarawneh  Z. Perspectives on sustainable wastewater treatment technologies and reuse options in the urban areas of the mediterranean region. Desalination, 2009, 237(1–3): 162–174
https://doi.org/10.1016/j.desal.2007.12.030
2 Bednarek  A, Szklarek  S, Zalewski  M. Nitrogen pollution removal from areas of intensive farming—Comparison of various denitrification biotechnologies. Ecohydrology & Hydrobiology, 2014, 14(2): 132–141
https://doi.org/10.1016/j.ecohyd.2014.01.005
3 Liu  M, Zhang  Y, Yang  M, Tian  Z, Ren  L, Zhang  S. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system. Environmental Science & Technology, 2012, 46(14): 7551–7557
https://doi.org/10.1021/es301145m pmid: 22709269
4 Zhou  L J, Ying  G G, Liu  S, Zhao  J L, Yang  B, Chen  Z F, Lai  H J. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Science of the Total Environment, 2013, 452–453: 365–376
https://doi.org/10.1016/j.scitotenv.2013.03.010 pmid: 23538107
5 Huang  M H, Li  Y M, Gu  G W. Toxicity reduction of municipal wastewater by anaerobic-anoxic-oxic process. Biomedical and Environmental Sciences, 2010, 23(6): 481–486
https://doi.org/10.1016/S0895-3988(11)60011-1 pmid: 21315247
6 Huber  M M, Korhonen  S, Ternes  T A, von Gunten  U. Oxidation of pharmaceuticals during water treatment with chlorine dioxide. Water Research, 2005, 39(15): 3607–3617
https://doi.org/10.1016/j.watres.2005.05.040 pmid: 16061268
7 Lee  Y, von Gunten  U. Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical). Water Research, 2010, 44(2): 555–566
https://doi.org/10.1016/j.watres.2009.11.045 pmid: 20015530
8 Gilbert  Y, Le Bihan  Y, Aubry  G, Veillette  M, Duchaine  C, Lessard  P. Microbiological and molecular characterization of denitrification in biofilters treating pig manure. Bioresource Technology, 2008, 99(10): 4495–4502
https://doi.org/10.1016/j.biortech.2007.06.066 pmid: 17935979
9 Zhang  L, Zhang  S, Wang  S, Wu  C, Chen  Y, Wang  Y, Peng  Y. Enhanced biological nutrient removal in a simultaneous fermentation, denitrification and phosphate removal reactor using primary sludge as internal carbon source. Chemosphere, 2013, 91(5): 635–640
https://doi.org/10.1016/j.chemosphere.2012.12.071 pmid: 23411089
10 Nakada  N, Shinohara  H, Murata  A, Kiri  K, Managaki  S, Sato  N, Takada  H. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Research, 2007, 41(19): 4373–4382
https://doi.org/10.1016/j.watres.2007.06.038 pmid: 17632207
11 Yang  Z D, Lv  A H, Nie  Y L, Hu  C. Catalytic ozonation performance and surface property of supported Fe3O4 catalysts dispersions. Frontiers of Environmental Science & Engineering, 2013, 7(3): 451–456
https://doi.org/10.1007/s11783-013-0509-0
12 Oller  I, Malato  S, Sánchez-Pérez  J A. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 2011, 409(20): 4141–4166
https://doi.org/10.1016/j.scitotenv.2010.08.061 pmid: 20956012
13 Cui  J Q, Wang  X J, Yuan  Y L, Guo  X W, Gu  X Y, Jian  L. Combined ozone oxidation and biological aerated filter processes for treatment of cyanide containing electroplating wastewater. Chemical Engineering Journal, 2014, 241: 184–189
https://doi.org/10.1016/j.cej.2013.09.003
14 Lotito  A M, Fratino  U, Bergna  G, Di Iaconi  C. Integrated biological and ozone treatment of printing textile wastewater. Chemical Engineering Journal, 2012, 195: 261–269
https://doi.org/10.1016/j.cej.2012.05.006
15 Rosal  R, Rodríguez  A, Perdigón-Melón  J A, Petre  A, García-Calvo  E, Gómez  M J, Agüera  A, Fernández-Alba  A R. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Research, 2010, 44(2): 578–588
https://doi.org/10.1016/j.watres.2009.07.004 pmid: 19628245
16 Lee  C O, Howe  K J, Thomson  B M. Ozone and biofiltration as an alternative to reverse osmosis for removing PPCPs and micropollutants from treated wastewater. Water Research, 2012, 46(4): 1005–1014
https://doi.org/10.1016/j.watres.2011.11.069 pmid: 22202904
17 APHA. Standard methods for the examination for water and wastewater. 21th ed. Washington, D C: American Public Health Association, 2005
18 Li  X W, Shi  H C, Li  K X, Zhang  L, Gan  Y P. Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in Beijing, China. Frontiers of Environmental Science & Engineering, 2014, 8(6): 888–894
https://doi.org/10.1007/s11783-014-0735-0
19 Chang  H, Wan  Y, Naile  J, Zhang  X, Wiseman  S, Hecker  M, Lam  M H W, Giesy  J P, Jones  P D. Simultaneous quantification of multiple classes of phenolic compounds in blood plasma by liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography. A, 2010, 1217(4): 506–513
https://doi.org/10.1016/j.chroma.2009.11.076 pmid: 20003983
20 Yu  X, Zuo  J, Tang  X, Li  R, Li  Z, Zhang  F. Toxicity evaluation of pharmaceutical wastewaters using the alga Scenedesmus obliquus and the bacterium Vibrio fischeri. Journal of Hazardous Materials, 2014, 266: 68–74
https://doi.org/10.1016/j.jhazmat.2013.12.012 pmid: 24374566
21 Ge  S, Peng  Y, Wang  S, Lu  C, Cao  X, Zhu  Y. Nitrite accumulation under constant temperature in anoxic denitrification process: the effects of carbon sources and COD/NO3-N. Bioresource Technology, 2012, 114: 137–143
https://doi.org/10.1016/j.biortech.2012.03.016 pmid: 22503195
22 Huber  M M, Göbel  A, Joss  A, Hermann  N, Löffler  D, McArdell  C S, Ried  A, Siegrist  H, Ternes  T A, von Gunten  U. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environmental Science & Technology, 2005, 39(11): 4290–4299
https://doi.org/10.1021/es048396s pmid: 15984812
23 Ternes  T A, Stüber  J, Herrmann  N, McDowell  D, Ried  A, Kampmann  M, Teiser  B. Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Research, 2003, 37(8): 1976–1982
https://doi.org/10.1016/S0043-1354(02)00570-5 pmid: 12697241
24 Dodd  M C, Buffle  M O, Von Gunten  U. Oxidation of antibacterial molecules by aqueous ozone: moiety-specific reaction kinetics and application to ozone-based wastewater treatment. Environmental Science & Technology, 2006, 40(6): 1969–1977
https://doi.org/10.1021/es051369x pmid: 16570623
25 Huber  M M, Canonica  S, Park  G Y, von Gunten  U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental Science & Technology, 2003, 37(5): 1016–1024
https://doi.org/10.1021/es025896h pmid: 12666935
26 Zhang  H, Yamada  H, Tsuno  H. Removal of endocrine-disrupting chemicals during ozonation of municipal sewage with brominated byproducts control. Environmental Science & Technology, 2008, 42(9): 3375–3380
https://doi.org/10.1021/es702714e pmid: 18522121
27 Ho  L, Grasset  C, Hoefel  D, Dixon  M B, Leusch  F D, Newcombe  G, Saint  C P, Brookes  J D. Assessing granular media filtration for the removal of chemical contaminants from wastewater. Water Research, 2011, 45(11): 3461–3472
https://doi.org/10.1016/j.watres.2011.04.005 pmid: 21529882
28 Coleman  W E, Munch  J W, Ringhand  H P, Kaylor  W H, Mitchell  D E. Ozonation/post-chlorination of humic acid: a model for predicting drinking water disinfection by-products. Ozone Science and Engineering, 1992, 14(1): 51–69
https://doi.org/10.1080/01919519208552317
29 Mezzanotte  V, Fornaroli  R, Canobbio  S, Zoia  L, Orlandi  M. Colour removal and carbonyl by-production in high dose ozonation for effluent polishing. Chemosphere, 2013, 91(5): 629–634
https://doi.org/10.1016/j.chemosphere.2013.01.001 pmid: 23363621
30 Wert  E C, Rosario-Ortiz  F L, Drury  D D, Snyder  S A. Formation of oxidation byproducts from ozonation of wastewater. Water Research, 2007, 41(7): 1481–1490
https://doi.org/10.1016/j.watres.2007.01.020 pmid: 17335867
31 Tripathi  S, Pathak  V, Tripathi  D M, Tripathi  B D. Application of ozone based treatments of secondary effluents. Bioresource Technology, 2011, 102(3): 2481–2486
https://doi.org/10.1016/j.biortech.2010.11.028 pmid: 21126870
32 Reungoat  J, Escher  B I, Macova  M, Argaud  F X, Gernjak  W, Keller  J. Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. Water Research, 2012, 46(3): 863–872
https://doi.org/10.1016/j.watres.2011.11.064 pmid: 22172561
33 Prieto-Rodríguez  L, Oller  I, Klamerth  N, Agüera  A, Rodríguez  E M, Malato  S. Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Research, 2013, 47(4): 1521–1528
https://doi.org/10.1016/j.watres.2012.11.002 pmid: 23332646
34 von Gunten  U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research, 2003, 37(7): 1443–1467
https://doi.org/10.1016/S0043-1354(02)00457-8 pmid: 12600374
35 Lee  Y, Kovalova  L, McArdell  C S, von Gunten  U. Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. Water Research, 2014, 64: 134–148
https://doi.org/10.1016/j.watres.2014.06.027 pmid: 25046377
[1] Supplementary Material Download
Related articles from Frontiers Journals
[1] Barsha Roy, Khushboo Kadam, Suresh Palamadai Krishnan, Chandrasekaran Natarajan, Amitava Mukherjee. Assessing combined toxic effects of tetracycline and P25 titanium dioxide nanoparticles using Allium cepa bioassay[J]. Front. Environ. Sci. Eng., 2021, 15(1): 6-.
[2] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[3] Xuesong Liu, Jianmin Wang. Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia[J]. Front. Environ. Sci. Eng., 2020, 14(6): 97-.
[4] Xuewen Yi, Zhanqi Gao, Lanhua Liu, Qian Zhu, Guanjiu Hu, Xiaohong Zhou. Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental conditions and a case study in Luoma Lake, East China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 109-.
[5] Shengkun Dong, Chenyue Yin, Xiaohong Chen. Toxicity-oriented water quality engineering[J]. Front. Environ. Sci. Eng., 2020, 14(5): 80-.
[6] Ting Zhang, Heze Liu, Yiyuan Zhang, Wenjun Sun, Xiuwei Ao. Comparative genotoxicity of water processed by three drinking water treatment plants with different water treatment procedures[J]. Front. Environ. Sci. Eng., 2020, 14(3): 39-.
[7] Qian-Yuan Wu, Yi-Jun Yan, Yao Lu, Ye Du, Zi-Fan Liang, Hong-Ying Hu. Identification of important precursors and theoretical toxicity evaluation of byproducts driving cytotoxicity and genotoxicity in chlorination[J]. Front. Environ. Sci. Eng., 2020, 14(2): 25-.
[8] Ravikumar KVG, Debayan Ghosh, Mrudula Pulimi, Chandrasekaran Natarajan, Amitava Mukherjee. In situ formation of bimetallic FeNi nanoparticles on sand through green technology: Application for tetracycline removal[J]. Front. Environ. Sci. Eng., 2020, 14(1): 16-.
[9] Kun Wan, Wenfang Lin, Shuai Zhu, Shenghua Zhang, Xin Yu. Biofiltration and disinfection codetermine the bacterial antibiotic resistome in drinking water: A review and meta-analysis[J]. Front. Environ. Sci. Eng., 2020, 14(1): 10-.
[10] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[11] Bei Ye, Zhuo Chen, Xinzheng Li, Jianan Liu, Qianyuan Wu, Cheng Yang, Hongying Hu, Ronghe Wang. Inhibition of bromate formation by reduced graphene oxide supported cerium dioxide during ozonation of bromide-containing water[J]. Front. Environ. Sci. Eng., 2019, 13(6): 86-.
[12] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
[13] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[14] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[15] Tiezheng Tong, Kenneth H. Carlson, Cristian A. Robbins, Zuoyou Zhang, Xuewei Du. Membrane-based treatment of shale oil and gas wastewater: The current state of knowledge[J]. Front. Environ. Sci. Eng., 2019, 13(4): 63-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed