Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (1) : 85-92     https://doi.org/10.1007/s11783-014-0689-2
RESEARCH ARTICLE |
Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation
Yuebing SUN1,Dan ZHAO2,Yingming XU1,*(),Lin WANG1,Xuefeng LIANG1,Yue SHEN1
1. Key Laboratory of Original Environmental Quality, Ministry of Agriculture/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Institute of Agro-Environmental Protection, Ministry of Agriculture, Tianjin 300191, China
2. College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
Download: PDF(275 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Stabilization in the remediation of heavy metal contaminated soils has been gaining prominence because of its cost-effectiveness and rapid implementation. In this study, microbial properties such as microbial community and enzyme activities, chemical properties such as soil pH and metal fraction, and heavy metal accumulation in spinach (Spinacia oleracea) were considered in assessing stabilization remediation effectiveness using sepiolite. Results showed that soil pH values increased with rising sepiolite concentration. Sequential extraction results indicated that the addition of sepiolite converted significant amounts of exchangeable fraction of Cd and Pb into residual form. Treatments of sepiolite were observed to reduce Cd and Pb translocation from the soil to the roots and shoots of spinach. Concentrations of Cd and Pb exhibited 12.6%–51.0% and 11.5%–46.0% reduction for the roots, respectively, and 0.9%–46.2% and 43.0%–65.8% reduction for the shoots, respectively, compared with the control group. Increase in fungi and actinomycete counts, as well as in catalase activities, indicated that soil metabolic recovery occurred after sepiolite treatments.

Keywords stabilization remediation      heavy metals      sepiolite      soil quality      spinach (Spinacia oleracea)     
Corresponding Authors: Yingming XU   
Online First Date: 02 April 2014    Issue Date: 03 December 2015
 Cite this article:   
Yuebing SUN,Dan ZHAO,Yingming XU, et al. Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation[J]. Front. Environ. Sci. Eng., 2016, 10(1): 85-92.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-014-0689-2
http://journal.hep.com.cn/fese/EN/Y2016/V10/I1/85
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuebing SUN
Dan ZHAO
Yingming XU
Lin WANG
Xuefeng LIANG
Yue SHEN
sequence speciation extractant
fraction 1 water soluble plus exchangeable (SE) 8 mL of 1.0 mmol·L−1 MgCl2 at pH 7.0 for 1 h at 25°C
fraction 2 bound to carbonate orweakly specifically adsorbed (WSA) 8 mL of 1.0 mmol·L−1 NaAc adjusted to pH 5.0 with acetic acid for 5.0 h
fraction 3 bound to Fe-Mn oxides (OX) 20 mL of 0.04 mmol·L−1 NH2·HCl in 25% (v) acetic acid (pH 2.0) for 6.0 h at 96°C
fraction 4 bound to organic matter (OM) 3 mL of 30% H2O2 and 0.02 mol·L−1HNO3 (pH 2.0) for 2.0 h at 85°C, followed by 3 mL 30% (v) H2O2 (pH 2.0) for 3.0 h at 85°C and then 5 mL of 3.2 mmol·L−1 NH4Ac in 20% HNO3 diluted to 20 mL at room temperature for 0.5 h
fraction 5 residual (RES) the above four fractions subtracted from the total metal content
Tab.1  Sequence extraction processes of heavy metals in soil
sepiolite/% pH shoot dry weight Cd accumulation factor Pb accumulation factor bacteria / (107·g−1 soil) fungi/(105·g−1 soil) actinomycete/(106·g−1 soil)
shoot root shoot root
0 7.72±0.02d 2.69±0.05a 0.67 1.83 0.0076 0.0876 1.17a 2.25ab 1.05b
0.5 7.81±0.01c 2.49±0.08ab 0.66 1.60 0.0043 0.0775 0.76b 2.30ab 1.07b
1 7.85±0.00c 2.13±0.11cd 0.63 1.52 0.0035 0.0670 0.64bc 2.85a 1.44ab
3 7.92±0.02b 2.38±0.13bc 0.51 1.18 0.0031 0.0597 0.41c 2.05b 1.45ab
5% 8.03±0.02a 1.89±0.10d 0.36 0.90 0.0026 0.0473 0.29cd 2.00b 1.75a
Tab.2  Response of pH, Cd and Pb accumulation factor and microbial properties under different treatments
Fig.1  Cd (a) and Pb (b) distribution into separate fractions in the studied soils
Fig.2  Cd (a) and Pb (b) concentrations in edible part of spinach treated with sepiolite
Fig.3  Soil enzyme activities under different treatments of sepiolite
pH SE-Cd SE-Pb shoot biomass catalase urease invertase shoot Cd concentration shoot Pb concentration
pH 1 −0.79 −0.99** −0.99** 0.86 −0.97** −0.82 −0.83 −0.86
SE-Cd 1 0.85 0.72 −0.97** 0.87 0.48 0.96** 0.80
SE-Pb 1 0.96** −0.89* 0.99** 0.83 0.87 0.88*
shoot biomass 1 −0.83 0.94* 0.80 0.78 0.82
catalase 1 −0.90* −0.51 −0.92* −0.86
urease 1 0.83 0.86 0.92*
invertase 1 0.51 0.74
shoot Cd concentration 1 0.68
shoot Pb concentration 1
Tab.3  Correlation coefficients between pH, available metals, soil enzyme activities and biomass and metal concentration in spinach
1 Doğan  M, Alkan  M, Demirbaş  Ö, Özdemir  Y, Özmetin  C. Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions. Chemical Engineering Journal, 2006, 124(1–3): 89–101
https://doi.org/10.1016/j.cej.2006.08.016
2 Akçay  M. FT-IR spectroscopic investigation of the adsorption pyridine on the raw sepiolite and Fe-pillared sepiolite from anatolia. Journal of Molecular Structure, 2004, 694(1–3): 21–26
https://doi.org/10.1016/j.molstruc.2004.01.010
3 Tekin  N, Dinçer  A, Demirbaş  Ö, Alkan  M. Adsorption of cationic polyacrylamide onto sepiolite. Journal of Hazardous Materials, 2006, 134(1–3): 211–219
https://doi.org/10.1016/j.jhazmat.2005.11.005 pmid: 16343759
4 Eren  E, Gumus  H. Characterization of the structural properties and Pb(II) adsorption behavior of iron oxide coated sepiolite. Desalination, 2011, 273(2–3): 276–284
https://doi.org/10.1016/j.desal.2011.01.004
5 Shirvani  M, Shariatmadari  H, Kalbasi  M, Nourbakhsh  F, Najafi  B. Sorption of cadmium on palygorskite, sepiolite and calcite: Equilibria and organic ligand affected kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 287(1–3): 182–190
https://doi.org/10.1016/j.colsurfa.2006.03.052
6 Doğan  M, Turhan  Y, Alkan  M, Namli  H, Turan  P, Demirbaş  Ö. Functionalized sepiolite for heavy metal ions adsorption. Desalination, 2008, 230(1–3): 248–268
https://doi.org/10.1016/j.desal.2007.11.029
7 Kocaoba  S. Adsorption of Cd(II), Cr(III) and Mn(II) on natural sepiolite. Desalination, 2009, 244(1–3): 24–30
https://doi.org/10.1016/j.desal.2008.04.033
8 Liang  X F, Xu  Y M, Sun  G H, Wang  L, Sun  Y B, Sun  Y, Qin  X. Preparation and characterization of mercapto functionalized sepiolite and their application for sorption of lead and cadmium. Chemical Engineering Journal, 2011, 174(1): 436–444
https://doi.org/10.1016/j.cej.2011.08.060
9 Lin  D S, Liu  Y, Xu  Y M, Zhou  Q X, Sun  G H. Effects of sepiolite on the immobilization of cadmium and zinc in soil. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 46(3): 346–350 (in Chinese)
10 Liang  X F, Xu  Y M, Wang  L, Sun  G H, Qin  X, Sun  Y. In-situ immobilization of cadmium and lead in a contaminated agricultural field by adding natural clays combined with phosphate fertilizer. Acta Scientiae Circumstantiae, 2011, 31(5): 1011–1018 (in Chinese)
11 Sun  Y B, Sun  G H, Xu  Y M, Wang  L, Liang  X F, Lin  D S, Hu  F Z. Assessment of natural sepiolite on cadmium stabilization, microbial communities, and enzyme activities in acidic soil. Environmental Science and Pollution Research International, 2013, 20(5): 3290–3299
https://doi.org/10.1007/s11356-012-1261-x pmid: 23093419
12 Kumpiene  J, Lagerkvist  A, Maurice  C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Management (New York, N.Y.), 2008, 28(1): 215–225
https://doi.org/10.1016/j.wasman.2006.12.012 pmid: 17320367
13 Zhou  Q X, Song  Y F. Principles and Methods of Contaminated Soil Remediation. Beijing: Science Press, 2004 (in Chinese)
14 Kumpiene  J, Ore  S, Renella  G, Mench  M, Lagerkvist  A, Maurice  C. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environmental Pollution, 2006, 144(1): 62–69
https://doi.org/10.1016/j.envpol.2006.01.010 pmid: 16517035
15 Wang  Q Y, Zhou  D M, Cang  L. Microbial and enzyme properties of apple orchard soil as affected by long-term application of copper fungicide. Soil Biology & Biochemistry, 2009, 41(7): 1504–1509
https://doi.org/10.1016/j.soilbio.2009.04.010
16 Kandeler  E, Luxhøi  J, Tscherko  D, Magid  J. Xylanase, invertase and protease at the soil-litter interface of a loamy sand. Soil Biology & Biochemistry, 1999, 31(8): 1171–1179
https://doi.org/10.1016/S0038-0717(99)00035-8
17 Tessier  A, Campell  P G C, Bisson  M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 1979, 51(7): 844–851
https://doi.org/10.1021/ac50043a017
18 Shen  G Q, Cao  L K, Lu  Y T, Hong  J B. Influence of phenanthrene on cadmium toxicity to soil enzymes and microbial growth. Environmental Science and Pollution Research International, 2005, 12(5): 259–263
https://doi.org/10.1065/espr2005.06.266 pmid: 16206718
19 Tabatabai  M A. Soil enzymes. In: Weaver  R W, Angle  J S, Bottomley  P S, eds. Methods of Soil Analysis. Part II: Microbiological and Biochemical Properties. Madison: Soil Society of America, 1994
20 Stępniewska  Z, Wolińska  A, Ziomek  J. Response of soil catalase activity to chromium contamination. Journal of Environmental Sciences-China, 2009, 21(8): 1142–1147
https://doi.org/10.1016/S1001-0742(08)62394-3 pmid: 19862930
21 Kandeler  E, Kampichler  C, Horak  O. Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils, 1996, 23(3): 299–306
https://doi.org/10.1007/BF00335958
22 Malandrino  M, Abollino  O, Buoso  S, Giacomino  A, La Gioia  C, Mentasti  E. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite. Chemosphere, 2011, 82(2): 169–178
https://doi.org/10.1016/j.chemosphere.2010.10.028 pmid: 21055788
23 Sun  Y B, Xu  Y M, Wang  L, Lin  D S, Liang  X F. Assessment of sepiolite for immobilization of cadmium-contaminated soils. Geoderma, 2013, 193–194: 149–155
https://doi.org/10.1016/j.geoderma.2012.07.012
24 Liu  R Q, Zhao  D Y. In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles. Chemosphere, 2007, 68(10): 1867–1876
https://doi.org/10.1016/j.chemosphere.2007.03.010 pmid: 17462708
25 Sun  Y B, Sun  G H, Xu  Y M, Wang  L, Lin  D S, Liang  X F, Shi  X. In situ stabilization remediation of cadmium contaminated soils of wastewater irrigation region using sepiolite. Journal of Environmental Sciences-China, 2012, 24(10): 1799–1805
https://doi.org/10.1016/S1001-0742(11)61010-3 pmid: 23520850
26 Ackzai  A K K, Bazai  Z A. Phytoaccumulation of heavy metals in spinach (Spinacea oleraceac L. irrigated with wastewater of Quetta City). Journal of the Chemical Society of Pakistan, 2006, 28(5): 473–477
27 Chunilall  V, Kindness  A, Jonnalagadda  S B. Heavy metal uptake by spinach leaves grown on contaminated soils with lead, mercury, cadmium, and nickel. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 2004, 39(3): 473–481
https://doi.org/10.1081/PFC-120035931 pmid: 15186035
28 Sun  Y B, Zhou  Q X, An  J, Liu  W T, Liu  R. Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma, 2009, 150(1–2): 106–112
https://doi.org/10.1016/j.geoderma.2009.01.016
29 Zhu  Y G, Chen  S B, Yang  J C. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China. Environment International, 2004, 30(3): 351–356
https://doi.org/10.1016/j.envint.2003.07.001 pmid: 14987865
30 Chen  S B, Xu  M G, Ma  Y B, Yang  J C. Evaluation of different phosphate amendments on availability of metals in contaminated soil. Ecotoxicology and Environmental Safety, 2007, 67(2): 278–285
https://doi.org/10.1016/j.ecoenv.2006.06.008 pmid: 16887186
31 de Mora  A P, Ortega-Calvo  J J, Cabrera  F, Madejón  E. Changes in enzyme activities and microbial biomass after “in situ” remediation of a heavy metal-contaminated soil. Applied Soil Ecology, 2005, 28(2): 125–137
https://doi.org/10.1016/j.apsoil.2004.07.006
32 Lee  J J, Park  R D, Kim  Y W, Shim  J H, Chae  D H, Rim  Y S, Sohn  B K, Kim  T H, Kim  K Y. Effect of food waste compost on microbial population, soil enzyme activity and lettuce growth. Bioresource Technology, 2004, 93(1): 21–28
https://doi.org/10.1016/j.biortech.2003.10.009 pmid: 14987716
33 Tao  J, Griffiths  B, Zhang  S J, Chen  X Y, Liu  M Q, Hu  F, Li  H X. Effects of earthworms on soil enzyme activity in an organic residue amended rice–wheat rotation agro-ecosystem. Applied Soil Ecology, 2009, 42(3): 221–226
https://doi.org/10.1016/j.apsoil.2009.04.003
34 Garau  G, Castaldi  P, Santona  L, Deiana  P, Melis  P. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma, 2007, 142(1–2): 47–57
https://doi.org/10.1016/j.geoderma.2007.07.011
35 Aciego Pietri  J C, Brookes  P C. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biology & Biochemistry, 2008, 40(7): 1856–1862
https://doi.org/10.1016/j.soilbio.2008.03.020
Related articles from Frontiers Journals
[1] Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals[J]. Front. Environ. Sci. Eng., 2018, 12(3): 4-.
[2] Teza Mwamulima, Xiaolin Zhang, Yongmei Wang, Shaoxian Song, Changsheng Peng. Novel approach to control adsorbent aggregation: iron fixed bentonite-fly ash for Lead (Pb) and Cadmium (Cd) removal from aqueous media[J]. Front. Environ. Sci. Eng., 2018, 12(2): 2-.
[3] Jie Ren, Zhuo Zhang, Mei Wang, Guanlin Guo, Ping Du, Fasheng Li. Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium[J]. Front. Environ. Sci. Eng., 2018, 12(2): 10-.
[4] Yong Song,Lisha Liu,Zhidan Fu,Qing Ye,Shuiyuan Cheng,Tianfang Kang,Hongxing Dai. Excellent performance of Cu-Mn/Ti-sepiolite catalysts for low-temperature CO oxidation[J]. Front. Environ. Sci. Eng., 2017, 11(2): 5-.
[5] Tong Chi, Jiane Zuo, Fenglin Liu. Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar[J]. Front. Environ. Sci. Eng., 2017, 11(2): 15-.
[6] Sheng Huang, Xin Zhao, Yanqiu Sun, Jianli Ma, Xiaofeng Gao, Tian Xie, Dongsheng Xu, Yi Yu, Youcai Zhao. Pollution of hazardous substances in industrial construction and demolition wastes and their multi-path risk within an abandoned pesticide manufacturing plant[J]. Front. Environ. Sci. Eng., 2017, 11(1): 12-.
[7] Boran WU, Dongyang WANG, Xiaoli CHAI, Fumitake TAKAHASHI, Takayuki SHIMAOKA. Characterization of chlorine and heavy metals for the potential recycling of bottom ash from municipal solid waste incinerators as cement additives[J]. Front. Environ. Sci. Eng., 2016, 10(4): 8-.
[8] Md. Lutfor RAHMAN,Shaheen M. SARKAR,Mashitah Mohd YUSOFF. Efficient removal of heavy metals from electroplating wastewater using polymer ligands[J]. Front. Environ. Sci. Eng., 2016, 10(2): 352-361.
[9] Chengyuan SU,Weiguang LI,Xingzhe LIU,Xiaofei HUANG,Xiaodan YU. Fe-Mn-sepiolite as an effective heterogeneous Fenton-like catalyst for the decolorization of reactive brilliant blue[J]. Front. Environ. Sci. Eng., 2016, 10(1): 37-45.
[10] Jiwan SINGH,Ajay S. KALAMDHAD. Effect of lime on speciation of heavy metals during composting of water hyacinth[J]. Front. Environ. Sci. Eng., 2016, 10(1): 93-102.
[11] Jingling LIU,Tao YANG,Qiuying CHEN,Feng LIU,Binbin WANG. Distribution and potential ecological risk of heavy metals in the typical eco-units of Haihe River Basin[J]. Front. Environ. Sci. Eng., 2016, 10(1): 103-113.
[12] Yiying JIN,Yangyang LI,Fuqiang LIU. Combustion effects and emission characteristics of SO2, CO, NOx and heavy metals during co-combustion of coal and dewatered sludge[J]. Front. Environ. Sci. Eng., 2016, 10(1): 201-210.
[13] Rongbing FU,Na MU,Xiaopin GUO,Zhen XU,Dongsu BI. Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron[J]. Front. Environ. Sci. Eng., 2015, 9(5): 867-878.
[14] Xiaolong WANG,Shiming DING,Qi ZHANG,Weiping HU. Assessment on contaminations in sediments of an intake and the inflow canals in Taihu Lake, China[J]. Front. Environ. Sci. Eng., 2015, 9(4): 665-674.
[15] Guangxu ZHU,Qingjun GUO,Junxing YANG,Hanzhi ZHANG,Rongfei WEI,Chunyu WANG,Marc PETERS,Xiaoyong ZHOU,Jun YANG. Washing out heavy metals from contaminated soils from an iron and steel smelting site[J]. Front. Environ. Sci. Eng., 2015, 9(4): 634-641.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed