Please wait a minute...

Frontiers of Environmental Science & Engineering

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (3) : 379-385     https://doi.org/10.1007/s11783-013-0606-0
RESEARCH ARTICLE
Effects of phosphorus concentration on Cr(VI) sorption onto phosphorus-rich sludge biochar
DING Wenchuan1,2,PENG Wenlong2,ZENG Xiaolan1,3,(),TIAN Xiumei2
Three Gorges Reservoir Area’s Ecology and Environment Key Laboratory of Ministry of Education, Chongqing University, Chongqing 400045, China
Department of Environmental Engineering, Chongqing University, Chongqing 400045, China
Department of Water Science and Engineering, Chongqing University, Chongqing 400045, China
Download: PDF(190 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To investigate effects of phosphorus content on Cr(VI) sorption onto phosphorus-rich biochar, sewage sludge of different phosphorus concentrations from 4 to 60 mg·g-1 by dry weight were prepared and carbonized to make biochar for batch sorption experiments. Test results revealed that different phosphorous concentration of raw sludge had respective impacts on surface area, pore surface area, average pore diameter and pH value of derived biochar. The adsorption kinetics of phosphorus-rich biochar could be described by the pseudo-second-order model. The sorption isotherm data followed Langmiur model better than Freundlich model. Biochar produced from sludge with phosphorus concentration of 20 mg·g-1 gave the largest chromium sorption capacity, which could be attributed to its largest surface area and pores surface area comparing with those of biochars from sludge with other phosphorus concentrations. The chromium loaded biochar was analyzed using Fourier Transform Infrared Spectroscopy and X-ray Diffraction measurement. The results indicated that chemical functional groups hydroxyl and methyl on surface of biochar were involved in Cr(VI) binding and its reducing to Cr(III). Then, a portion of Cr(III) in form of various phosphate precipitates was bound onto biochar surface and the rest was released into the solution. The experimental results suggested that phosphorus played an important role in pore and surface area development of sludge biochar during pyrolytic process. It also could react with Cr(III) on the biochar surface that impacted on capacity of Cr(VI) removal from solution by sludge biochar. Therefore, phosphorus concentration in sludge should be considered when sludge pyrolytic residue would be reused for heavy metals sorbing.

Keywords phosphorus      biochar      sewage sludge      hexavalent chromium      adsorption     
Corresponding Author(s): ZENG Xiaolan   
Issue Date: 19 May 2014
 Cite this article:   
DING Wenchuan,PENG Wenlong,ZENG Xiaolan, et al. Effects of phosphorus concentration on Cr(VI) sorption onto phosphorus-rich sludge biochar[J]. Front.Environ.Sci.Eng., 2014, 8(3): 379-385.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-013-0606-0
http://journal.hep.com.cn/fese/EN/Y2014/V8/I3/379
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DING Wenchuan
PENG Wenlong
ZENG Xiaolan
TIAN Xiumei
samplesP4P10P20P30P60
SB / (m2·g-1)22.8836.5639.7533.9019.34
Sm / (m2·g-1)10.6712.6314.907.252.54
Vt / (cm3·g-1)0.0720.0680.0780.0660.061
Dp / Å79.8074.6168.74101.05126.64
pH7.2210.1210.3410.5611.67
Tab.1  
Fig.1  Sorption of Cr(VI) onto biochars at different contact times (sorbent: 20 g·L-1, initial Cr(VI) concentration: 200 g·L-1, reaction time: 0-24 h, initial pH: 4.0)
biocharqe exp/ (mg·g-1)pseudo-first-order modelpseudo-second-order model
qe cal./(mg·g-1)k1,ads/hr2qe cal./(mg·g-1)K2,ads/(g·mg-1·h-1)r2
P42.773.921.090.9282.850.610.999
P105.164.351.010.9765.240.741.000
P206.2911.191.430.9316.440.360.999
P303.152.291.230.9673.191.231.000
P601.231.032.010.9711.245.691.000
Tab.2  
biocharLangmuirFreundlich
Q° (mg·g-1)KL (L·mg-1)r2KF (mg·g-1)nr2
P48.220.00350.97640.141.740.9846
P1016.690.00390.99330.181.470.9771
P2014.740.00730.99830.391.780.9706
P3012.170.00300.99120.131.540.9851
P605.920.00530.99720.191.990.9701
Tab.3  
Fig.2  Sorption isotherms for Cr(VI) sorption onto biochars. (sorbent: 20 g·L-1, initial Cr(VI) concentration: 50-800 mg·L-1, reaction time: 24 h, initial pH: 4.0)
Fig.3  Phosphorus concentrations in raw sludge versus total Cr and Cr(VI) removal by biochars (sorbent: 20 g·L-1, initial Cr(VI) concentration: 200 mg·L-1, reaction time: 24 h, initial pH: 4.0)
Fig.4  FTIR spectra of biochar P20 before and after Cr(VI) loaded. (sorbent: 20 g·L-1, initial Cr(VI) concentration: 800 mg·L-1, reaction time: 24 h, initial pH: 4.0)
Fig.5  X-ray diffract spectrum of sludge biochar P20 before and after sorption: (a)Cr2O3, (b)CrPO4, (c)Cr5(P3O10)3, (d)KxCrO2 and (e)Cr(PO3)3 (sorbent: 20 g·L-1, initial Cr(VI) concentration: 800 mg·L-1, reaction time: 24 h, initial pH: 4.0)
1 Khezami L, Capart R. Removal of chromium(VI) from aqueous solution by activated carbons: kinetic and equilibrium studies. Journal of Hazardous Materials, 2005, 123(1-3): 223-231 PMID:15913888
doi: 10.1016/j.jhazmat.2005.04.012
2 Xu C H, Cheng D D, Gao B Y, Yin Z L, Yue Q Y, Zhao X. Preparation and characterization of β-FeOOH-coated sand and its adsorption of Cr(VI) from aqueous solutions. Frontiers of Environmental Science and Engineering, 2012, 6(4): 455-462
3 Pehlivan E, Kahraman H, Pehlivan E. Sorption equilibrium of Cr(VI) ions on oak wood charcoal (Carbo Ligni) and charcoal ash as low-cost adsorbents. Fuel Processing Technology, 2011, 92(1): 65-70
doi: 10.1016/j.fuproc.2010.08.021
4 Demirbas A. Heavy metal adsorption onto agro-based waste materials: a review. Journal of Hazardous Materials, 2008, 157(2-3): 220-229
doi: 10.1016/j.jhazmat.2008.01.024 pmid: 18291580
5 Jain M, Garg V K, Kadirvelu K. Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomass. Journal of Environmental Management, 2010, 91(4): 949-957
doi: 10.1016/j.jenvman.2009.12.002 pmid: 20042266
6 Hawari A H, Mulligan C N. Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Bioresource Technology, 2006, 97(4): 692-700
doi: 10.1016/j.biortech.2005.03.033 pmid: 15935654
7 Sud D, Mahajan G, Kaur M P. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions-a review. Bioresource Technology, 2008, 99(14): 6017-6027
doi: 10.1016/j.biortech.2007.11.064 pmid: 18280151
8 Qiu Y P, Zheng Z Z, Zhou Z L, Sheng G D. Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresource Technology, 2009, 100(21): 5348-5351
doi: 10.1016/j.biortech.2009.05.054 pmid: 19540756
9 Cao X D, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource Technology, 2010, 101(14): 5222-5228
doi: 10.1016/j.biortech.2010.02.052 pmid: 20206509
10 Dong X L, Ma L Q, Li Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials, 2011, 190(1-3): 909-915
doi: 10.1016/j.jhazmat.2011.04.008 pmid: 21550718
11 Inyang M, Gao B, Ding W C, Pullammanappallil P, Zimmerman A R, Cao X D. Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse. Separation Science and Technology, 2011, 46(12): 1950-1956
doi: 10.1080/01496395.2011.584604
12 Rulkens W. Sewage sludge as a biomass resource for the production of energy: overview and assessment of the various options. Energy & Fuels, 2008, 22(1): 9-15
doi: 10.1021/ef700267m
13 Barneto A G, Carmona J A, Alfonso J E M, Blanco J D. Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost. Journal of Analytical and Applied Pyrolysis, 2009, 86(1): 108-114
doi: 10.1016/j.jaap.2009.04.011
14 Fonts I, Azuara M, Gea G, Murillo M B. Study of the pyrolysis liquids obtained from different sewage sludge. Journal of Analytical and Applied Pyrolysis, 2009, 85(1-2): 184-191
doi: 10.1016/j.jaap.2008.11.003
15 Rozada F, Otero M, Morán A, García A I. Adsorption of heavy metals onto sewage sludge-derived materials. Bioresource Technology, 2008, 99(14): 6332-6338
doi: 10.1016/j.biortech.2007.12.015 pmid: 18234495
16 Ding W C, Liu R L, Zeng X L, Yang Y, He Q, Wang Y X.Study on removal of Cr(VI) from wastewater with pyrolyzed sludge residue. Journal of Safety and Environment, 2010, 10(4): 8-11(in Chinese)
17 Heinzmann B. Phosphorus recycling in sewage treatment plants with biological phosphorus removal. Water Science and Technology, 2005, 52(10-11): 543-548
pmid: 16459832
18 Bureau of Environmental Protection of China. Water and Wastewater Monitor and Analysis Method, 4th ed. Beijing: China Environmental Science Press, 2004
19 Ho Y S, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 2000, 34(3): 735-742
doi: 10.1016/S0043-1354(99)00232-8
20 Bhattacharjee S, Chakrabarty S, Maity S, Kar S, Thakur P, Bhattacharyya G. Removal of lead from contaminated water bodies using sea nodule as an adsorbent. Water Research, 2003, 37(16): 3954-3966
doi: 10.1016/S0043-1354(03)00315-4 pmid: 12909114
21 Wong Y C, Szeto Y S, Cheung W H, McKay G. Pseudo-first-order kinetic studies of the sorption of acid dyes onto chitosan. Journal of Applied Polymer Science, 2004, 92(3): 1633-1645
doi: 10.1002/app.13714
22 Zan F Y, Huo S L, Xi B D, Zhao X. Biosorption of Cd2+ and Cu2+ on immobilized Saccharomyces cerevisiae. Frontier of Environmental Science and Engineering, 2012, 6(1): 51-58
doi: 10.1007/s11783-011-0206-9
23 Muñoz-González Y, Arriagada-Acuña R, Soto-Garrido G, García-Lovera R. Activated carbons from peach stones and pine sawdust by phosphoric acid activation used in clarification and decolorization processes. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2009, 84(1): 39-47
doi: 10.1002/jctb.2001
24 Fiol N, Escudero C, Villaescusa I. Reuse of exhausted ground coffee waste for Cr(VI) sorption. Separation Science and Technology, 2008, 43(3): 582-596
doi: 10.1080/01496390701812418
25 Bansal M, Singh D, Garg V K. A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes’ carbons. Journal of Hazardous Materials, 2009, 171(1-3): 83-92
doi: 10.1016/j.jhazmat.2009.05.124 pmid: 19553015
26 Karthikeyan T, Rajgopal S, Miranda L R. Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. Journal of Hazardous Materials, 2005, 124(1-3): 192-199
doi: 10.1016/j.jhazmat.2005.05.003 pmid: 15927367
27 Kobya M. Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies. Bioresource Technology, 2004, 91(3): 317-321
doi: 10.1016/j.biortech.2003.07.001 pmid: 14607493
28 Park D, Yun Y S, Park J M. Reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Environmental Science and Technology, 2004, 38(18): 4860-4864
doi: 10.1021/es035329+ pmid: 15487797
29 Hsu N H, Wang S L, Lin Y C, Sheng G D, Lee J F. Reduction of Cr(VI) by crop-residue-derived black carbon. Environmental Science & Technology, 2009, 43(23): 8801-8806
doi: 10.1021/es901872x pmid: 19943649
30 Kousalya G N, Rajiv Gandhi M, Meenakshi S. Sorption of chromium(VI) using modified forms of chitosan beads. International Journal of Biological Macromolecules, 2010, 47(2): 308-315
doi: 10.1016/j.ijbiomac.2010.03.010 pmid: 20361994
31 Suksabye P, Nakajima A, Thiravetyan P, Baba Y, Nakbanpote W. Mechanism of Cr(VI) adsorption by coir pith studied by ESR and adsorption kinetic. Journal of Hazardous Materials, 2009, 161(2-3): 1103-1108 PMID:18513862
doi: 10.1016/j.jhazmat.2008.04.064
32 Yue Z, Bender S E, Wang J W, Economy J. Removal of chromium Cr(VI) by low-cost chemically activated carbon materials from water. Journal of Hazardous Materials, 2009, 166(1): 74-78
doi: 10.1016/j.jhazmat.2008.10.125 pmid: 19091466
Related articles from Frontiers Journals
[1] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[2] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[3] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[4] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[5] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[6] Wenqing Xu, Mark L. Segall, Zhao Li. Reactivity of Pyrogenic Carbonaceous Matter (PCM) in mediating environmental reactions: Current knowledge and future trends[J]. Front. Environ. Sci. Eng., 2020, 14(5): 86-.
[7] Rongrong Zhang, Daohao Li, Jin Sun, Yuqian Cui, Yuanyuan Sun. In situ synthesis of FeS/Carbon fibers for the effective removal of Cr(VI) in aqueous solution[J]. Front. Environ. Sci. Eng., 2020, 14(4): 68-.
[8] Quan Zheng, Minglu Zhang, Tingting Zhang, Xinhui Li, Minghan Zhu, Xiaohui Wang. Insights from metagenomic, metatranscriptomic, and molecular ecological network analyses into the effects of chromium nanoparticles on activated sludge system[J]. Front. Environ. Sci. Eng., 2020, 14(4): 60-.
[9] Nima Kamali, Abdollah Rashidi Mehrabadi, Maryam Mirabi, Mohammad Ali Zahed. Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer substitute[J]. Front. Environ. Sci. Eng., 2020, 14(4): 70-.
[10] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[11] Ouchen Cai, Yuanxiao Xiong, Haijun Yang, Jinyong Liu, Hui Wang. Phosphorus transformation under the influence of aluminum, organic carbon, and dissolved oxygen at the water-sediment interface: A simulative study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 50-.
[12] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[13] Aifeng Zhai, Xiaowen Ding, Lin Liu, Quan Zhu, Guohe Huang. Total phosphorus accident pollution and emergency response study based on geographic information system in Three Gorges Reservoir area[J]. Front. Environ. Sci. Eng., 2020, 14(3): 46-.
[14] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[15] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed