Please wait a minute...

Frontiers of Environmental Science & Engineering

Front.Environ.Sci.Eng.    2014, Vol. 8 Issue (3) : 379-385     https://doi.org/10.1007/s11783-013-0606-0
RESEARCH ARTICLE |
Effects of phosphorus concentration on Cr(VI) sorption onto phosphorus-rich sludge biochar
DING Wenchuan1,2,PENG Wenlong2,ZENG Xiaolan1,3,(),TIAN Xiumei2
Three Gorges Reservoir Area’s Ecology and Environment Key Laboratory of Ministry of Education, Chongqing University, Chongqing 400045, China
Department of Environmental Engineering, Chongqing University, Chongqing 400045, China
Department of Water Science and Engineering, Chongqing University, Chongqing 400045, China
Download: PDF(190 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To investigate effects of phosphorus content on Cr(VI) sorption onto phosphorus-rich biochar, sewage sludge of different phosphorus concentrations from 4 to 60 mg·g-1 by dry weight were prepared and carbonized to make biochar for batch sorption experiments. Test results revealed that different phosphorous concentration of raw sludge had respective impacts on surface area, pore surface area, average pore diameter and pH value of derived biochar. The adsorption kinetics of phosphorus-rich biochar could be described by the pseudo-second-order model. The sorption isotherm data followed Langmiur model better than Freundlich model. Biochar produced from sludge with phosphorus concentration of 20 mg·g-1 gave the largest chromium sorption capacity, which could be attributed to its largest surface area and pores surface area comparing with those of biochars from sludge with other phosphorus concentrations. The chromium loaded biochar was analyzed using Fourier Transform Infrared Spectroscopy and X-ray Diffraction measurement. The results indicated that chemical functional groups hydroxyl and methyl on surface of biochar were involved in Cr(VI) binding and its reducing to Cr(III). Then, a portion of Cr(III) in form of various phosphate precipitates was bound onto biochar surface and the rest was released into the solution. The experimental results suggested that phosphorus played an important role in pore and surface area development of sludge biochar during pyrolytic process. It also could react with Cr(III) on the biochar surface that impacted on capacity of Cr(VI) removal from solution by sludge biochar. Therefore, phosphorus concentration in sludge should be considered when sludge pyrolytic residue would be reused for heavy metals sorbing.

Keywords phosphorus      biochar      sewage sludge      hexavalent chromium      adsorption     
Corresponding Authors: ZENG Xiaolan   
Issue Date: 19 May 2014
 Cite this article:   
DING Wenchuan,PENG Wenlong,ZENG Xiaolan, et al. Effects of phosphorus concentration on Cr(VI) sorption onto phosphorus-rich sludge biochar[J]. Front.Environ.Sci.Eng., 2014, 8(3): 379-385.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-013-0606-0
http://journal.hep.com.cn/fese/EN/Y2014/V8/I3/379
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DING Wenchuan
PENG Wenlong
ZENG Xiaolan
TIAN Xiumei
samplesP4P10P20P30P60
SB / (m2·g-1)22.8836.5639.7533.9019.34
Sm / (m2·g-1)10.6712.6314.907.252.54
Vt / (cm3·g-1)0.0720.0680.0780.0660.061
Dp / Å79.8074.6168.74101.05126.64
pH7.2210.1210.3410.5611.67
Tab.1  
Fig.1  Sorption of Cr(VI) onto biochars at different contact times (sorbent: 20 g·L-1, initial Cr(VI) concentration: 200 g·L-1, reaction time: 0-24 h, initial pH: 4.0)
biocharqe exp/ (mg·g-1)pseudo-first-order modelpseudo-second-order model
qe cal./(mg·g-1)k1,ads/hr2qe cal./(mg·g-1)K2,ads/(g·mg-1·h-1)r2
P42.773.921.090.9282.850.610.999
P105.164.351.010.9765.240.741.000
P206.2911.191.430.9316.440.360.999
P303.152.291.230.9673.191.231.000
P601.231.032.010.9711.245.691.000
Tab.2  
biocharLangmuirFreundlich
Q° (mg·g-1)KL (L·mg-1)r2KF (mg·g-1)nr2
P48.220.00350.97640.141.740.9846
P1016.690.00390.99330.181.470.9771
P2014.740.00730.99830.391.780.9706
P3012.170.00300.99120.131.540.9851
P605.920.00530.99720.191.990.9701
Tab.3  
Fig.2  Sorption isotherms for Cr(VI) sorption onto biochars. (sorbent: 20 g·L-1, initial Cr(VI) concentration: 50-800 mg·L-1, reaction time: 24 h, initial pH: 4.0)
Fig.3  Phosphorus concentrations in raw sludge versus total Cr and Cr(VI) removal by biochars (sorbent: 20 g·L-1, initial Cr(VI) concentration: 200 mg·L-1, reaction time: 24 h, initial pH: 4.0)
Fig.4  FTIR spectra of biochar P20 before and after Cr(VI) loaded. (sorbent: 20 g·L-1, initial Cr(VI) concentration: 800 mg·L-1, reaction time: 24 h, initial pH: 4.0)
Fig.5  X-ray diffract spectrum of sludge biochar P20 before and after sorption: (a)Cr2O3, (b)CrPO4, (c)Cr5(P3O10)3, (d)KxCrO2 and (e)Cr(PO3)3 (sorbent: 20 g·L-1, initial Cr(VI) concentration: 800 mg·L-1, reaction time: 24 h, initial pH: 4.0)
1 Khezami L, Capart R. Removal of chromium(VI) from aqueous solution by activated carbons: kinetic and equilibrium studies. Journal of Hazardous Materials, 2005, 123(1-3): 223-231 PMID:15913888
doi: 10.1016/j.jhazmat.2005.04.012
2 Xu C H, Cheng D D, Gao B Y, Yin Z L, Yue Q Y, Zhao X. Preparation and characterization of β-FeOOH-coated sand and its adsorption of Cr(VI) from aqueous solutions. Frontiers of Environmental Science and Engineering, 2012, 6(4): 455-462
3 Pehlivan E, Kahraman H, Pehlivan E. Sorption equilibrium of Cr(VI) ions on oak wood charcoal (Carbo Ligni) and charcoal ash as low-cost adsorbents. Fuel Processing Technology, 2011, 92(1): 65-70
doi: 10.1016/j.fuproc.2010.08.021
4 Demirbas A. Heavy metal adsorption onto agro-based waste materials: a review. Journal of Hazardous Materials, 2008, 157(2-3): 220-229
doi: 10.1016/j.jhazmat.2008.01.024 pmid: 18291580
5 Jain M, Garg V K, Kadirvelu K. Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomass. Journal of Environmental Management, 2010, 91(4): 949-957
doi: 10.1016/j.jenvman.2009.12.002 pmid: 20042266
6 Hawari A H, Mulligan C N. Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Bioresource Technology, 2006, 97(4): 692-700
doi: 10.1016/j.biortech.2005.03.033 pmid: 15935654
7 Sud D, Mahajan G, Kaur M P. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions-a review. Bioresource Technology, 2008, 99(14): 6017-6027
doi: 10.1016/j.biortech.2007.11.064 pmid: 18280151
8 Qiu Y P, Zheng Z Z, Zhou Z L, Sheng G D. Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresource Technology, 2009, 100(21): 5348-5351
doi: 10.1016/j.biortech.2009.05.054 pmid: 19540756
9 Cao X D, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource Technology, 2010, 101(14): 5222-5228
doi: 10.1016/j.biortech.2010.02.052 pmid: 20206509
10 Dong X L, Ma L Q, Li Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials, 2011, 190(1-3): 909-915
doi: 10.1016/j.jhazmat.2011.04.008 pmid: 21550718
11 Inyang M, Gao B, Ding W C, Pullammanappallil P, Zimmerman A R, Cao X D. Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse. Separation Science and Technology, 2011, 46(12): 1950-1956
doi: 10.1080/01496395.2011.584604
12 Rulkens W. Sewage sludge as a biomass resource for the production of energy: overview and assessment of the various options. Energy & Fuels, 2008, 22(1): 9-15
doi: 10.1021/ef700267m
13 Barneto A G, Carmona J A, Alfonso J E M, Blanco J D. Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost. Journal of Analytical and Applied Pyrolysis, 2009, 86(1): 108-114
doi: 10.1016/j.jaap.2009.04.011
14 Fonts I, Azuara M, Gea G, Murillo M B. Study of the pyrolysis liquids obtained from different sewage sludge. Journal of Analytical and Applied Pyrolysis, 2009, 85(1-2): 184-191
doi: 10.1016/j.jaap.2008.11.003
15 Rozada F, Otero M, Morán A, García A I. Adsorption of heavy metals onto sewage sludge-derived materials. Bioresource Technology, 2008, 99(14): 6332-6338
doi: 10.1016/j.biortech.2007.12.015 pmid: 18234495
16 Ding W C, Liu R L, Zeng X L, Yang Y, He Q, Wang Y X.Study on removal of Cr(VI) from wastewater with pyrolyzed sludge residue. Journal of Safety and Environment, 2010, 10(4): 8-11(in Chinese)
17 Heinzmann B. Phosphorus recycling in sewage treatment plants with biological phosphorus removal. Water Science and Technology, 2005, 52(10-11): 543-548
pmid: 16459832
18 Bureau of Environmental Protection of China. Water and Wastewater Monitor and Analysis Method, 4th ed. Beijing: China Environmental Science Press, 2004
19 Ho Y S, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 2000, 34(3): 735-742
doi: 10.1016/S0043-1354(99)00232-8
20 Bhattacharjee S, Chakrabarty S, Maity S, Kar S, Thakur P, Bhattacharyya G. Removal of lead from contaminated water bodies using sea nodule as an adsorbent. Water Research, 2003, 37(16): 3954-3966
doi: 10.1016/S0043-1354(03)00315-4 pmid: 12909114
21 Wong Y C, Szeto Y S, Cheung W H, McKay G. Pseudo-first-order kinetic studies of the sorption of acid dyes onto chitosan. Journal of Applied Polymer Science, 2004, 92(3): 1633-1645
doi: 10.1002/app.13714
22 Zan F Y, Huo S L, Xi B D, Zhao X. Biosorption of Cd2+ and Cu2+ on immobilized Saccharomyces cerevisiae. Frontier of Environmental Science and Engineering, 2012, 6(1): 51-58
doi: 10.1007/s11783-011-0206-9
23 Muñoz-González Y, Arriagada-Acuña R, Soto-Garrido G, García-Lovera R. Activated carbons from peach stones and pine sawdust by phosphoric acid activation used in clarification and decolorization processes. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2009, 84(1): 39-47
doi: 10.1002/jctb.2001
24 Fiol N, Escudero C, Villaescusa I. Reuse of exhausted ground coffee waste for Cr(VI) sorption. Separation Science and Technology, 2008, 43(3): 582-596
doi: 10.1080/01496390701812418
25 Bansal M, Singh D, Garg V K. A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes’ carbons. Journal of Hazardous Materials, 2009, 171(1-3): 83-92
doi: 10.1016/j.jhazmat.2009.05.124 pmid: 19553015
26 Karthikeyan T, Rajgopal S, Miranda L R. Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. Journal of Hazardous Materials, 2005, 124(1-3): 192-199
doi: 10.1016/j.jhazmat.2005.05.003 pmid: 15927367
27 Kobya M. Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies. Bioresource Technology, 2004, 91(3): 317-321
doi: 10.1016/j.biortech.2003.07.001 pmid: 14607493
28 Park D, Yun Y S, Park J M. Reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Environmental Science and Technology, 2004, 38(18): 4860-4864
doi: 10.1021/es035329+ pmid: 15487797
29 Hsu N H, Wang S L, Lin Y C, Sheng G D, Lee J F. Reduction of Cr(VI) by crop-residue-derived black carbon. Environmental Science & Technology, 2009, 43(23): 8801-8806
doi: 10.1021/es901872x pmid: 19943649
30 Kousalya G N, Rajiv Gandhi M, Meenakshi S. Sorption of chromium(VI) using modified forms of chitosan beads. International Journal of Biological Macromolecules, 2010, 47(2): 308-315
doi: 10.1016/j.ijbiomac.2010.03.010 pmid: 20361994
31 Suksabye P, Nakajima A, Thiravetyan P, Baba Y, Nakbanpote W. Mechanism of Cr(VI) adsorption by coir pith studied by ESR and adsorption kinetic. Journal of Hazardous Materials, 2009, 161(2-3): 1103-1108 PMID:18513862
doi: 10.1016/j.jhazmat.2008.04.064
32 Yue Z, Bender S E, Wang J W, Economy J. Removal of chromium Cr(VI) by low-cost chemically activated carbon materials from water. Journal of Hazardous Materials, 2009, 166(1): 74-78
doi: 10.1016/j.jhazmat.2008.10.125 pmid: 19091466
Related articles from Frontiers Journals
[1] Zhen Li, Zhaofu Qiu, Ji Yang, Benteng Ma, Shuguang Lu, Chuanhui Qin. Investigation of phosphate adsorption from an aqueous solution using spent fluid catalytic cracking catalyst containing lanthanum[J]. Front. Environ. Sci. Eng., 2018, 12(6): 15-.
[2] Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type[J]. Front. Environ. Sci. Eng., 2018, 12(5): 8-.
[3] Yan-Shan Wang, Dao-Bo Li, Feng Zhang, Zhong-Hua Tong, Han-Qing Yu. Algal biomass derived biochar anode for efficient extracellular electron uptake from Shewanella oneidensis MR-1[J]. Front. Environ. Sci. Eng., 2018, 12(4): 11-.
[4] Xiangyu Wang, Weitao Lian, Xin Sun, Jun Ma, Ping Ning. Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline in aqueous solution[J]. Front. Environ. Sci. Eng., 2018, 12(4): 9-.
[5] Lin Lin, Ying-yu Li, Xiao-yan Li. Acidogenic sludge fermentation to recover soluble organics as the carbon source for denitrification in wastewater treatment: Comparison of sludge types[J]. Front. Environ. Sci. Eng., 2018, 12(4): 3-.
[6] Zhi-Long Ye, Yujun Deng, Yaoyin Lou, Xin Ye, Shaohua Chen. Occurrence of veterinary antibiotics in struvite recovery from swine wastewater by using a fluidized bed[J]. Front. Environ. Sci. Eng., 2018, 12(3): 7-.
[7] Zhengjun Feng, Lizhong Zhu. Sorption of phenanthrene to biochar modified by base[J]. Front. Environ. Sci. Eng., 2018, 12(2): 1-.
[8] Dongliang Du, Chuanyi Zhang, Kuixia Zhao, Guangrong Sun, Siqi Zou, Limei Yuan, Shilong He. Effect of different carbon sources on performance of an A2N-MBR process and its microbial community structure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 4-.
[9] Ling Li, Yu He, Xia Lu. New insights into mercury removal mechanism on CeO2-based catalysts: A first-principles study[J]. Front. Environ. Sci. Eng., 2018, 12(2): 11-.
[10] Shanshan Ding, Wen Huang, Shaogui Yang, Danjun Mao, Julong Yuan, Yuxuan Dai, Jijie Kong, Cheng Sun, Huan He, Shiyin Li, Limin Zhang. Degradation of Azo dye direct black BN based on adsorption and microwave-induced catalytic reaction[J]. Front. Environ. Sci. Eng., 2018, 12(1): 5-.
[11] Yang-ying Zhao, Fan-xin Kong, Zhi Wang, Hong-wei Yang, Xiao-mao Wang, Yuefeng F. Xie, T. David Waite. Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes[J]. Front. Environ. Sci. Eng., 2017, 11(6): 20-.
[12] Qi Lin, Xin Xu, Lihua, Wang, Qian Chen, Jing Fang, Xiaodong Shen, Liping Lou, Guangming Tian. The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: effect of feedstock and pyrolysis temperature[J]. Front. Environ. Sci. Eng., 2017, 11(3): 5-.
[13] Xuemin Wu,Fenfen Zhu,Juanjuan Qi,Luyao Zhao,Fawei Yan,Chenghui Li. Challenge of biodiesel production from sewage sludge catalyzed by KOH, KOH/activated carbon, and KOH/CaO[J]. Front. Environ. Sci. Eng., 2017, 11(2): 3-.
[14] Tong Chi, Jiane Zuo, Fenglin Liu. Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar[J]. Front. Environ. Sci. Eng., 2017, 11(2): 15-.
[15] Yandong Yang,Liang Zhang,Hedong Shao,Shujun Zhang,Pengchao Gu,Yongzhen Peng. Enhanced nutrients removal from municipal wastewater through biological phosphorus removal followed by partial nitritation/anammox[J]. Front. Environ. Sci. Eng., 2017, 11(2): 8-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed