Please wait a minute...

Frontiers of Earth Science

Front. Earth Sci.
RESEARCH ARTICLE
Climate change impact and adaptation on wheat yield, water use and water use efficiency at North Nile Delta
Marwa Gamal Mohamed ALI1,2, Mahmoud Mohamed IBRAHIM1, Ahmed El BAROUDY1, Michael FULLEN3, El-Said Hamad OMAR2, Zheli DING4, Ahmed Mohammed Saad KHEIR2()
1. Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 33516 Egypt
2. Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12411 Egypt
3. Faculty of Science and Engineering, The University of Wolverhampton, Wolverhampton WV1 1LY, UK
4. Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 570000 China
Download: PDF(896 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Investigation of climate change impacts on food security has become a global hot spot. Even so, efforts to mitigate these issues in arid regions have been insufficient. Thus, in this paper, further research is discussed based on data obtained from various crop and climate models. Two DSSAT crop models (CMs) (CERES-Wheat and N-Wheat) were calibrated with two wheat cultivars (Gemiza9 and Misr1). A baseline simulation (1981-2010) was compared with different scenarios of simulations using three Global Climate Models (GCMs) for the 2030s, 2050s and 2080s. Probable impacts of climate change were assessed using the GCMs and CMs under the high emission Representative Concentration Pathway (RCP8.5). Results predicted decreased wheat grain yields by a mean of 8.7%, 11.4% and 13.2% in the 2030s, 2050s and 2080s, respectively, relative to the baseline yield. Negative impacts of climatic change are probable, despite some uncertainties within the GCMs (i.e., 2.1%, 5.0% and 8.0%) and CMs (i.e., 2.2%, 6.0% and 9.2%). Changing the planting date with a scenario of plus or minus 5 or 10 days from the common practice was assessed as a potentially effective adaptation option, which may partially offset the negative impacts of climate change. Delaying the sowing date by 10 days (from 20 November to 30 November) proved the optimum scenario and decreased further reduction in wheat yields resulting from climate change to 5.2%, 6.8% and 8.5% in the 2030s, 2050s and 2080s, respectively, compared with the 20 November scenario. The planting 5-days earlier scenario showed a decreased impact on climate change adaptation. However, the 10-days early planting scenario increased yield reduction under projected climate change. The cultivar Misr1 was more resistant to rising temperature than Gemiza9. Despite the negative impacts of projected climate change on wheat production, water use efficiency would slightly increase. The ensemble of multi-model estimated impacts and adaptation uncertainties of climate change can assist decision-makers in planning climate adaptation strategies.

Keywords DSSAT models      scenarios      adaptation      water use efficiency      climate change     
Corresponding Author(s): Ahmed Mohammed Saad KHEIR   
Online First Date: 29 April 2020   
 Cite this article:   
Marwa Gamal Mohamed ALI,Mahmoud Mohamed IBRAHIM,Ahmed El BAROUDY, et al. Climate change impact and adaptation on wheat yield, water use and water use efficiency at North Nile Delta[J]. Front. Earth Sci., 29 April 2020. [Epub ahead of print] doi: 10.1007/s11707-019-0806-4.
 URL:  
http://journal.hep.com.cn/fesci/EN/10.1007/s11707-019-0806-4
http://journal.hep.com.cn/fesci/EN/Y/V/I/0
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Marwa Gamal Mohamed ALI
Mahmoud Mohamed IBRAHIM
Ahmed El BAROUDY
Michael FULLEN
El-Said Hamad OMAR
Zheli DING
Ahmed Mohammed Saad KHEIR
Soil depth/cm Particle size distribution/% Texture FC/% WP/% AW/%
Sand Silt Clay
0–20 18.7 31.5 49.8 clay 43.0 22.0 21.0
20–40 15.7 32.6 51.7 clay 44.0 22.5 21.5
40–60 16.5 35.1 48.2 clay 41.7 21.0 20.7
Soil depth
/cm
EC
/(dS·m1)
pH SOM
/%
Available macronutrients
/(mg·kg1)
Kc
/(cm·h1)
N P K
0–20 3.2 8.1 1.5 62 10.7 249 0.45
20–40 3.4 8 1.4 48 9.9 241 0.49
40–60 3.6 7.8 1.1 35 8.5 206 0.38
Tab.1  Initial soil physico-chemical analysis before cultivation
Fig.1  Daily maximum temperature (Tmax), minimum temperature (Tmin), solar radiation (SRAD) and precipitation (rainfall) at Sakha during three growing seasons (2015/2016, 2016/2017 and 2017/2018).
Fig.2  Relative changes in daily solar radiation, maximum temperature and minimum temperature compared to the baseline under RCP8.5 and three global climate models (GCMs) during the 21st Century.
Models Parameter Parameter definition Initial *Misr1 Gemiza9
CERES-Wheat P1D Photoperiod sensitivity coefficient 75 30 97
P1V Vernalization sensitivity coefficient 5.0 30 0.0
P5 Thermal time from the onset of grain-filling to maturity/°Cd 450 553 600
G1 Kernel number per unit stem and spike weight at anthesis/(kernel·g1) 30 32 24
G2 Standard kernel size under optimum conditions/mg 35 35 49
G3 Maximum stem and spike weight when elongation ceases 1.0 7.8 1.0
PHINT Thermal time between the appearance of leaf tips/°Cd 60 100 100
N-Wheat VSEN Sensitivity to vernalization 1.0 2.8 0.0
PPSEN Sensitivity to photoperiod 1.2 2.2 4.2
P1 Thermal time from emergence to the end of juvenile/°Cd 400 400 400
P5 Thermal time from beginning of grain filling to maturity/°Cd 600 510 518
PHINT Phyllochron interval 120 100 100
GRNO Coefficient of kernel number per stem weight at the beginning of grain filling/(kernels·(g stem)1) 24 32 32
MXFIL Potential kernel growth rate/(mg· kernelday1) 1.9 3.0 3.0
STMMX Potential final dry weight of a single tiller, excluding grain 3.0 4.0 3.0
Tab.2  Genetic coefficients of two cultivars (Misr1 and Gemiza9) for two crop models (CERES-Wheat and N-Wheat)
Fig.3  Calibrations and validation of N-Wheat (triangle) and CERES-Wheat (scatter points) models under different irrigation treatments for two cultivars (Gemiza9 and Misr1) in three growing seasons.
Model evaluation indices N-Wheat model CERES-Wheat model
Grain yield Total biomass Grain yield Total biomass
Misr1 R2 0.95 0.98 0.92 0.89
RMSD (kg•ha1) 450 591 480 995
WI 0.98 0.98 0.96 0.97
Anthesis Maturity Anthesis Maturity
R2 0.67 0.73 0.62 0.73
RMSD (days) 2 2 3 3
WI 0.91 0.89 0.86 0.94
Grain yield Total biomass Grain yield Total biomass
R2 0.89 0.88 0.85 0.85
RMSD (kg•ha1) 641 1012 785 1200
Gemiza9 WI 0.93 0.90 0.88 0.82
Anthesis Maturity Anthesis Maturity
R2 0.65 0.75 0.55 0.69
RMSD (kg•ha1) 2 3 3 3
WI 0.85 0.84 0.77 0.87
Tab.3  The performance evaluation of N-Wheat and CERES-Wheat for Misr1 and Gemiza9 spring wheat cultivars
Fig.4  Change of daily maximum and minimum temperature relative to the baseline (1981–2010) under three GCMs and RCP8.5 through the 21st century.
Fig.5  Grain wheat yield (a), relative change (b) compared with the baseline (1981–2010) for both cultivars, open bars (Gemiza9) and closed bars (Misr1) and mean relative change of both cultivars (c) using two crop models (CMs) and three GCMs and RCP8.5 through the 21st century under current planting date (20 November) without adaptation.
Fig.6  Uncertainty of CMs and GCMs. Uncertainties are relative standard deviations based on two CMs (N-Wheat and CERES-Wheat) and three GCMs.
Fig.7  Accumulated seasonal evapotranspiration in baseline, short, mid- and end of century under different GCMs blue, green, and red for GFDL-ES2M, CSIRO-MK3-6-0, and HADGEM2-ES, respectively.
Fig.8  Water use efficiency in baseline, short, mid-, and end of century under different GCMs blue, green, and red for GFDL-ES2M, CSIRO-MK3-6-0, and HADGEM2-ES, respectively
Cultivars Crop model 2030 2050 2080
GCM1 GCM2 GCM3 GCM1 GCM2 GCM3 GCM1 GCM2 GCM3
Misr1 N-Wheat -3 -4 -5 -5 -6 -7 -6 -7 -10
CERES -2 -4 -6 -3 -5 -8 -4 -8 -9
Gemiza9 N-Wheat -4 -5 -6 -7 -8 -8 -7 -9 -13
CERES -3 -5 -7 -4 -6 -10 -5 -11 -14
Tab.4  Changes in wheat growth duration (days) for the studied cultivars relative to the baseline (1981–2010) under different climate scenarios on the North Nile Delta
Fig.9  Relative grain yield reduction (%) compared to the baseline in different time series as an average for both cultivars (a, above), without and with adaptations. Adaptations included A (delay sowing date by 5 days), B (delay sowing date by 10 days), C (early sowing by 5 days), and D (early sowing by 10 days), and % grain yield decrease compared to baseline data for both cultivars (Misr1 and Gemiza9) under the same adaptation options (A, B, C, and D) in 2030, 2050, and 2080 (b, below).
1 M A Ahmed, A F Magda, A E Ebtesam (2012). Growth and yield attributes of some newly wheat cultivars in relation to missing an irrigation at different stages of growth. J Appl Sci Res, 8: 5075–5080
2 L Aldieri, C P Vinci (2017). The role of technology spillovers in the process of water pollution abatement for large international firms. Sustainability, 9(5): 868–875
https://doi.org/10.3390/su9050868
3 L Aldieri, C P Vinci (2018). Innovation effects on employment in high-tech and low-tech industries: evidence from large international firms within the triad. Eurasian Business Review, 8(2): 229–243
https://doi.org/10.1007/s40821-017-0081-9
4 V A Alexandrov, G Hoogenboom (2000). The impact of climate variability and change on crop yield in Bulgaria. Agric Meteorol, 104(4): 315–327
https://doi.org/10.1016/S0168-1923(00)00166-0
5 B Andarzian, G Hoogenboom, M Bannayan, M Shirali, B Andarzian (2015). Determining optimum sowing date of wheat using CSM-CERES-Wheat model. J Saudi Soc Agric Sci, 14(2): 189–199
https://doi.org/10.1016/j.jssas.2014.04.004
6 S V Archontoulis, F E Miguez, K J Moore (2014). A methodology and an optimization tool to calibrate phenology of short-day species included in the APSIM PLANT model: application to soybean. Environ Model Softw, 62: 465–477
https://doi.org/10.1016/j.envsoft.2014.04.009
7 V K Arora, H Singh, B Singh (2007). Analyzing wheat productivity responses to climatic, irrigation and fertilizer-nitrogen regimes in a semi-arid sub-tropical environment using the CERES-Wheat model. Agric Water Manage, 94(1–3): 22–30
https://doi.org/10.1016/j.agwat.2007.07.002
8 S Asseng, F Ewert, P Martre, R P Rotter, D B Lobell, D Cammarano, B A Kimball, M J Ottman, G W Wall, J W White, M P Reynolds, P D Alderman, P V V Prasad, P K Aggarwal, J Anothai, B Basso, C Biernath, A G Challinor, G De Sanctis, J Doltra, E Fereres, M Garcia-Vila, S Gayler, G Hoogenboom, L A Hunt, R C Izaurralde, M Jabloun, C D Jones, K C Kersebaum, A K Koehler, C Müller, S Naresh Kumar, C Nendel, G O’Leary, J E Olesen, T Palosuo, E Priesack, E Eyshi Rezaei, A C Ruane, M A Semenov, I Shcherbak, C Stöckle, P Stratonovitch, T Streck, I Supit, F Tao, P J Thorburn, K Waha, E Wang, D Wallach, J Wolf, Z Zhao, Y Zhu (2015). Rising temperatures reduce global wheat production. Nat Clim Chang, 5(2): 143–147
https://doi.org/10.1038/nclimate2470
9 S Asseng, F Ewert, C Rosenzweig, J W Jones, J L Hatfield, A C Ruane, K J Boote, P J Thorburn, R P Rötter, D Cammarano, N Brisson, B Basso, P Martre, P K Aggarwal, C Angulo, P Bertuzzi, C Biernath, A J Challinor, J Doltra, S Gayler, R Goldberg, R Grant, L Heng, J Hooker, L A Hunt, J Ingwersen, R C Izaurralde, K C Kersebaum, C Müller, S Naresh Kumar, C Nendel, G O’Leary, J E Olesen, T M Osborne, T Palosuo, E Priesack, D Ripoche, M A Semenov, I Shcherbak, P Steduto, C Stöckle, P Stratonovitch, T Streck, I Supit, F Tao, M Travasso, K Waha, D Wallach, J W White, J R Williams, J Wolf (2013). Uncertainty in simulating wheat yields under climate change. Nat Clim Chang, 3(9): 827–832
https://doi.org/10.1038/nclimate1916
10 S Asseng, B A Keating, I R P Fillery, P J Gregory, J W Bowden, N C Turner, J A Palta, D G Abrecht (1998). Performance of the APSIM-wheat model in western Australia? Field Crops Res, 57(2): 163–179
https://doi.org/10.1016/S0378-4290(97)00117-2
11 S Asseng, A M S Kheir, B T Kassie, G Hoogenboom, A I N Abdelaal, D Z Haman, A Ruane (2018). Can Egypt become self-sufficient in wheat? Environ Res Lett, 13: 094012
https://doi.org/doi.org/10.1088/1748-9326/aada50
12 S Asseng, P Martre, A Maiorano, R P Rötter, G J O’Leary, G J Fitzgerald, C Girousse, R Motzo, F Giunta, M A Babar, M P Reynolds, A M S Kheir, P J Thorburn, K Waha, A C Ruane, P K Aggarwal, M Ahmed, J Balkovič, B Basso, C Biernath, M Bindi, D Cammarano, A J Challinor, G De Sanctis, B Dumont, E Eyshi Rezaei, E Fereres, R Ferrise, M Garcia-Vila, S Gayler, Y Gao, H Horan, G Hoogenboom, R C Izaurralde, M Jabloun, C D Jones, B T Kassie, K C Kersebaum, C Klein, A K Koehler, B Liu, S Minoli, M Montesino San Martin, C Müller, S Naresh Kumar, C Nendel, J E Olesen, T Palosuo, J R Porter, E Priesack, D Ripoche, M A Semenov, C Stöckle, P Stratonovitch, T Streck, I Supit, F Tao, M Van der Velde, D Wallach, E Wang, H Webber, J Wolf, L Xiao, Z Zhang, Z Zhao, Y Zhu, F Ewert (2019). Climate change impact and adaptation for wheat protein. Glob Change Biol, 25(1): 155–173
https://doi.org/10.1111/gcb.14481 pmid: 30549200
13 J E Cairns, J Hellin, K Sonder, J L Araus, J F Macrober, C Thierfelder, B M Prasanna (2013). Adapting maize production to climate change in sub-Saharan Africa. Food Secur, 5(3): 345–360
https://doi.org/10.1007/s12571-013-0256-x
14 A Ceglar, Z Črepinšek, L Kajfež-Bogataj, T Pogačar (2011). The simulation of phenological development in dynamic crop model: the Bayesian comparison of different methods. Agric Meteorol, 151(1): 101–115
https://doi.org/10.1016/j.agrformet.2010.09.007
15 A J Challinor, J Watson, D B Lobell, S M Howden, D R Smith, N Chhetri (2014). A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang, 4(4): 287–291
https://doi.org/10.1038/nclimate2153
16 A Challinor, T Wheeler, C Garforth, P Craufurd, A Kassam (2007). Assessing the vulnerability of food crop systems in Africa to climate change. Clim Change, 83(3): 381–399
https://doi.org/10.1007/s10584-007-9249-0
17 P J M Cooper, R Coe (2011). Assessing and addressing climate-induced risk in sub-Saharan rainfed agriculture. Exp Agric, 47(2): 179–184
https://doi.org/10.1017/S0014479711000019
18 D Deryng, J Elliott, C Folberth, C Müller, T A M Pugh, K J Boote, D Conway, A C Ruane, D Gerten, J W Jones, N Khabarov, S Olin, S Schaphoff, E Schmid, H Yang, C Rosenzweig (2016). Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nat Clim Chang, 6(8): 786–790
https://doi.org/10.1038/nclimate2995
19 M Dettori, C Cesaraccio, A Motroni, D Spano, P Duce (2011). Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia. Field Crops Res, 120(1): 179–188
https://doi.org/10.1016/j.fcr.2010.09.008
20 Z Feng, Y Yao, C Huilong, Y Feng (2014). Reusable component model development approach for parallel and distributed simulation. Sci World J “, 2014:1–12”
21 H C J Godfray, J R Beddington, I R Crute, L Haddad, D Lawrence, J F Muir, J Pretty, S Robinson, S M Thomas, C Toulmin (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967): 812–818
https://doi.org/10.1126/science.1185383 pmid: 20110467
22 D C Godwin, U Singh (1998). Nitrogen balance and crop response to nitrogen in upland and lowland cropping systems. In: Tsuji G, Hoogenboom G, Thornton P. eds. Understanding Options for Agricultural Production. Netherlands: Springer, 55–77.
23 E Hawkins, R Sutton (2011). The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn, 37(1–2): 407–418
https://doi.org/10.1007/s00382-010-0810-6
24 P Hájek, J Stejskal (2018). R&D cooperation and knowledge apillover effects for sustainable business innovation in the chemical industry. Sustainability, 10(4): 1064–1083
https://doi.org/10.3390/su10041064
25 L K Heng, S Asseng, K Mejahed, M Rusan (2007). Optimizing wheat productivity in two rain-fed environments of the West Asia-North Africa region using a simulation model. Eur J Agron, 26(2): 121–129
https://doi.org/10.1016/j.eja.2006.09.001
26 T W Hertel (2011). The global supply and demand for agricultural land in 2050: a perfect storm in the making? Am J Agric Econ, 93(2): 259–275
https://doi.org/10.1093/ajae/aaq189
27 D P Holzworth, N I Huth, P G Devoil, E J Zurcher, N I Herrmann, G Mclean, K Chenu, E J van Oosterom, V Snow, C Murphy, A D Moore, H Brown, J P M Whish, S Verrall, J Fainges, L W Bell, A S Peake, P L Poulton, Z Hochman, P J Thorburn, D S Gaydon, N P Dalgliesh, D Rodriguez, H Cox, S Chapman, A Doherty, E Teixeira, J Sharp, R Cichota, I Vogeler, F Y Li, E Wang, G L Hammer, M J Robertson, J P Dimes, A M Whitbread, J Hunt, H van Rees, T McClelland, P S Carberry, J N G Hargreaves, N MacLeod, C McDonald, J Harsdorf, S Wedgwood, B A Keating (2014). APSIM-evolution towards a new generation of agricultural systems simulation. Environ Model Softw, 62: 327–350
https://doi.org/10.1016/j.envsoft.2014.07.009
28 G Hoogenboom, J W Jones, P W Wilkens, C H Porter, K J Boote, L A Hunt, U Singh, J I Lizaso, J W White, O Uryasev, R Ogoshi, J Koo, V Shelia, G Y Tsuji (2015). Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.6. DSSAT Foundation, Prosser, Washington
29 L A Hunt, K J Boote (1998). Data for model operation, calibration, and evaluation. In: Tsuji G, Hoogenboom G, Thornton P, eds. Understanding Options for Agricultural Production. Netherlands: Springer, 9–39
30 C P Jacovides, H Kontoyiannis (1995). Statistical procedures for the evaluation of evapotranspiration computing models. Agric Water Manage, 27(3–4): 365–371
https://doi.org/10.1016/0378-3774(95)01152-9
31 I Jeunesse, C Cirelli, D Aubin, C Larrue, H Sellami, S Afifi, A Bellin, S Benabdallah, D N Bird, R Deidda, M Dettori, G Engin, F Herrmann, R Ludwig, B Mabrouk, B Majone, C Paniconi, A Soddu (2016). Is climate change a threat for water uses in the Mediterranean region? Results from a survey at local scale. Sci Total Environ, 543(Pt B): 981–996
https://doi.org/10.1016/j.scitotenv.2015.04.062 pmid: 25956206
32 T Johnen, U Boettcher, H Kage (2012). A variable thermal time of the double ridge to flag leaf emergence phase improves the predictive quality of a CERES-Wheat type phenology model. Comput Electron Agric, 89: 62–69
https://doi.org/10.1016/j.compag.2012.08.002
33 J W Jones, G Hoogenboom, C H Porter, K J Boote, W D Batchelor, L A Hunt, P W Wilkens, U Singh, A J Gijsman, J T Ritchie (2003). The DSSAT cropping system model? Eur J Agron, 18(3–4): 235–265
https://doi.org/10.1016/S1161-0301(02)00107-7
34 B T Kassie, S Asseng, C H Porter, F S Royce (2016). Performance of DSSAT N-Wheat across a wide range of current and future growing conditions. Eur J Agron, 81: 27–36
https://doi.org/10.1016/j.eja.2016.08.012
35 B A Keating, P S Carberry, G L Hammer, M E Probert, M J Robertson, D Holzworth, N I Huth, J N G Hargreaves, H Meinke, Z Hochman, G Mclean, K Verburg, V Snow, J P Dimes, M Silburn, E Wang, S Brown, K L Bristow, S Asseng, S Chapman, R L Mccown, D M Freebairn, C J Smith (2003). An overview of APSIM: a model designed for farming systems simulation. Eur J Agron, 18(3–4): 267–288
https://doi.org/10.1016/S1161-0301(02)00108-9
36 A M S Kheir, A El Baroudy, M A Aiad, M G Zoghdan, M A Abd El-Aziz, M G M Ali, M A Fullen (2019). Impacts of rising temperature, carbon dioxide concentration and sea level on wheat production in North Nile delta. Sci Total Environ, 651(Pt 2): 3161–3173
https://doi.org/10.1016/j.scitotenv.2018.10.209 pmid: 30463166
37 Y Lin, W Wu, Q Ge (2015). CERES-Maize model-based simulation of climate change impacts on maize yields and potential adaptive measures in Heilongjiang Province, China. J Sci Food Agric, 95(14): 2838–2849
https://doi.org/10.1002/jsfa.7024 pmid: 25428548
38 L, Ma L R A huja, S A Saseendran, R W Malone, T R Green, B T Nolan, P N S Bartling, G N Flerchinger, K J Boote, G Hoogenboom (2011). A protocol for parameterization and calibration of RZWQM2 in field research. In: Ahuja L R, Ma L, eds. Methods of Introducing System Models into Agricultural Research. Am Society Agron, Crop Science Society of America, Soil Science Society of America, 1–64
39 T Makkonen, T Inkinen (2018). Sectoral and technological systems of environmental innovation: the case of marine scrubber systems. J Clean Prod, 200: 110–121
https://doi.org/10.1016/j.jclepro.2018.07.163
40 P Martre, D Wallach, S Asseng, F Ewert, J W Jones, R P Rötter, K J Boote, A C Ruane, P J Thorburn, D Cammarano, J L Hatfield, C Rosenzweig, P K Aggarwal, C Angulo, B Basso, P Bertuzzi, C Biernath, N Brisson, A J Challinor, J Doltra, S Gayler, R Goldberg, R F Grant, L Heng, J Hooker, L A Hunt, J Ingwersen, R C Izaurralde, K C Kersebaum, C Müller, S N Kumar, C Nendel, G O’leary, J E Olesen, T M Osborne, T Palosuo, E Priesack, D Ripoche, M A Semenov, I Shcherbak, P Steduto, C O Stöckle, P Stratonovitch, T Streck, I Supit, F Tao, M Travasso, K Waha, J W White, J Wolf (2015). Multimodel ensembles of wheat growth: many models are better than one. Glob Change Biol, 21(2): 911–925
https://doi.org/10.1111/gcb.12768 pmid: 25330243
41 D N Moriasi, J G Arnold, M W V Liew, R L Bingner, R D Harmel, T L Veith, D N Moriasi , J G Arnold , M W Van Liew , R L Bingner , R D Harmel T L Veith (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE, 50(3): 885–900
https://doi.org/10.13031/2013.23153
42 R H Moss, J A Edmonds, K A Hibbard, M R Manning, S K Rose, D P van Vuuren, T R Carter, S Emori, M Kainuma, T Kram, G A Meehl, J F Mitchell, N Nakicenovic, K Riahi, S J Smith, R J Stouffer, A M Thomson, J P Weyant, T J Wilbanks (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282): 747–756
https://doi.org/10.1038/nature08823 pmid: 20148028
43 N M Mostegl, U Pröbstl-haider, R Jandl, V Haider (2019). Targeting climate change adaptation strategies to small-scale private forest owners. For Policy Econ, 99: 83–99
https://doi.org/10.1016/j.forpol.2017.10.001
44 C Müller, W Cramer, W L Hare, H Lotze-Campen (2011). Climate change risks for African agriculture. Proc Natl Acad Sci USA, 108(11): 4313–4315
https://doi.org/10.1073/pnas.1015078108 pmid: 21368199
45 T Osborne, G Rose, T Wheeler (2013). Variation in the global-scale impacts of climate change on crop productivity due to climate model uncertainty and adaptation. Agric Meteorol, 170: 183–194
https://doi.org/10.1016/j.agrformet.2012.07.006
46 P Paymard, M Bannayan, R S Haghighi (2018). Analysis of the climate change effect on wheat production systems and investigate the potential of management strategies. Nat Hazards, 91(3): 1237–1255
https://doi.org/10.1007/s11069-018-3180-8
47 M Piras, G Mascaro, R Deidda, E R Vivoni (2016). Impacts of climate change on precipitation and discharge extremes through the use of statistical downscaling approaches in a Mediterranean basin. Sci Total Environ, 543(Pt B): 952–964
https://doi.org/10.1016/j.scitotenv.2015.06.088 pmid: 26146163
48 J Pretty, W J Sutherland, J Ashby, J Auburn, D Baulcombe, M Bell, J Bentley, S Bickersteth, K Brown, J Burke, H Campbell, K Chen, E Crowley, I Crute, D Dobbelaere, G Edwards-Jones, F Funes-Monzote, H C J Godfray, M Griffon, P Gypmantisiri, L Haddad, S Halavatau, H Herren, M Holderness, A M Izac, M Jones, P Koohafkan, R Lal, T Lang, J McNeely, A Mueller, N Nisbett, A Noble, P Pingali, Y Pinto, R Rabbinge, N H Ravindranath, A Rola, N Roling, C Sage, W Settle, J M Sha, L Shiming, T Simons, P Smith, K Strzepeck, H Swaine, E Terry, T P Tomich, C Toulmin, E Trigo, S Twomlow, J K Vis, J Wilson, S Pilgrim (2010). The top 100 questions of importance to the future of global agriculture. Int J Agric Sustain, 8(4): 219–236
https://doi.org/10.3763/ijas.2010.0534
49 T Ritchie J, U Singh, D Godwin, W T Bowen (1998). Cereal growth, development,and yield. In: Tsuji G Y, Hoogenboom G, Thornton P K, eds., Understanding Options for Agricultural Production. Dordrecht: Kluwer Academic, 79–98
50 M J Robertson, P S Carberry, N I Huth, J E Turpin, M E Probert, P L Poulton, M Bell, G C Wright, S J Yeates, R B Brinsmead (2002). Simulation of growth and development of diverse legume species in APSIM. Aust J Agric Res, 53(4): 429–446
https://doi.org/10.1071/AR01106
51 C Rosenzweig, J Elliott, D Deryng, A C Ruane, C Müller, A Arneth, K J Boote, C Folberth, M Glotter, N Khabarov, K Neumann, F Piontek, T A M Pugh, E Schmid, E Stehfest, H Yang, J W Jones (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci USA, 111(9): 3268–3273
https://doi.org/10.1073/pnas.1222463110 pmid: 24344314
52 C E A Rosenzweig, J W Jones, J L Hatfield, A C Ruane, K J Boote, P Thorburn, J M Antle, G C Nelson, C Porter, S Janssen, S Asseng, B Basso, F Ewert, D Wallach, G Baigorria, J M Winter (2013). The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agric Meteorol, 170: 166–182
https://doi.org/10.1016/j.agrformet.2012.09.011
53 M Roser, E Ortiz-Ospina (2018). World Population Growth vol 2017: Our World In Data.org
54 R P Rötter , T R Carter, J E Olesen, J R Porter (2011). Crop-climate models need an overhaul? Nat Clim Chang, 1(4): 175–177
https://doi.org/10.1038/nclimate1152
55 D Rymbai, F M Sheikh (2018). The insight of agricultural adaptation to climate change: a case of rice growers in Eastern Himalaya, India. Int J Biometeorol, 62(10): 1833–1845
https://doi.org/10.1007/s00484-018-1586-3 pmid: 30141151
56 R Said (1993). The River Nile Geology and Hydrology and Utilization. Oxford: Pergamon
57 K D Sayre, S Rajaram, R A Fischer (1997). Yield potential progress in short bread wheats in Northwest Mexico. Crop Sci, 37(1): 36–42
https://doi.org/10.2135/cropsci1997.0011183X003700010006x
58 R Swart, R Biesbroek, T C Lourenço (2014). Science of adaptation to climate change and science for adaptation. Front Environ Sci, (2)
https://doi.org/10.3389/fenvs.2014.00029
59 F Tao, R P Rötter, T Palosuo, C Gregorio Hernández Díaz-Ambrona, M I Mínguez, M A Semenov, K C Kersebaum, C Nendel, X Specka, H Hoffmann, F Ewert, A Dambreville, P Martre, L Rodríguez, M Ruiz-Ramos, T Gaiser, J G Höhn, T Salo, R Ferrise, M Bindi, D Cammarano, A H Schulman (2018). Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Glob Change Biol, 24(3): 1291–1307
https://doi.org/10.1111/gcb.14019 pmid: 29245185
60 C Tebaldi, R Knutti (2007). The use of the multi-model ensemble in probabilistic climate projections. Philos Trans A Math Phys Eng Sci, 365(1857): 2053–2075
https://doi.org/10.1098/rsta.2007.2076 pmid: 17569654
61 P K Thornton, P G Jones, G Alagarswamy, J Andresen, M Herrero (2010). Adapting to climate change: agricultural system and household impacts in East Africa. Agric Syst, 103(2): 73–82
https://doi.org/10.1016/j.agsy.2009.09.003
62 F N Tubiello, F Ewert (2002). Simulating the effects of elevated CO2 on crops: approaches and applications for climate change. Eur J Agron, 18(1–2): 57–74
https://doi.org/10.1016/S1161-0301(02)00097-7
63 UNEP (2010). Africa Water Atlas. Division of Early Warning and Assessment United Nations Environment Programme, Nairobi, Kenya
64 USDA (2010). Keys to Soil Taxonomy. 3rd ed. United State Department of Agriculture. Natural Resources Conservation Services (NRCS)
65 D P van Vuuren, J Edmonds, M Kainuma, K Riahi, A Thomson, K Hibbard, G C Hurtt, T Kram, V Krey, J F Lamarque, T Masui, M Meinshausen, N Nakicenovic, S J Smith, S K Rose (2011). The representative concentration pathways: an overview. Clim Change, 109(1–2): 5–31
https://doi.org/10.1007/s10584-011-0148-z
66 D Wallach, P Martre, B Liu, S Asseng, F Ewert, P J Thorburn, M van Ittersum, P K Aggarwal, M Ahmed, B Basso, C Biernath, D Cammarano, A J Challinor, G De Sanctis, B Dumont, E Eyshi Rezaei, E Fereres, G J Fitzgerald, Y Gao, M Garcia-Vila, S Gayler, C Girousse, G Hoogenboom, H Horan, R C Izaurralde, C D Jones, B T Kassie, K C Kersebaum, C Klein, A K Koehler, A Maiorano, S Minoli, C Müller, S Naresh Kumar, C Nendel, G J O’Leary, T Palosuo, E Priesack, D Ripoche, R P Rötter, M A Semenov, C Stöckle, P Stratonovitch, T Streck, I Supit, F Tao, J Wolf, Z Zhang (2018). Multimodel ensembles improve predictions of crop-environment-management interactions. Glob Chang Biol, 24(11): 5072–5083
https://doi.org/10.1111/gcb.14411 pmid: 30055118
67 T Wheeler, J von Braun (2013). Climate change impacts on global food security. Science, 341(6145): 508–513
https://doi.org/10.1126/science.1239402 pmid: 23908229
68 J W White, G Hoogenboom, B A Kimball, G W Wall (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Res, 124(3): 357–368
https://doi.org/10.1016/j.fcr.2011.07.001
69 S Whitfield (2013). Uncertainty, ignorance and ambiguity in crop modelling for African agricultural adaptation. Clim Chang,1–16
70 R Wilby, S P Charles, E Zorita, B Timbal, P Whetton, L O Mearns (2004). Guidelines for use of climate scenarios developed from statistical downscaling methods. IPCC task group on data and scenario support for impacts and climate analysis
71 C J Willmott (1984). On the evaluation of model performance in physical geography. In: Gaile G L, Willmott C J, eds. Spatial Statistics and Models, Boston: D. Reidel, 443–460
[1] FES-19806-OF-KA_suppl_1 Download
Related articles from Frontiers Journals
[1] Sukh TUMENJARGAL, Steven R. FASSNACHT, Niah B.H. VENABLE, Alison P. KINGSTON, Maria E. FERNÁNDEZ-GIMÉNEZ, Batjav BATBUYAN, Melinda J. LAITURI, Martin KAPPAS, G. ADYABADAM. Variability and change of climate extremes from indigenous herder knowledge and at meteorological stations across central Mongolia[J]. Front. Earth Sci., 2020, 14(2): 286-297.
[2] Soheila SAFARYAN, Mohsen TAVAKOLI, Noredin ROSTAMI, Haidar EBRAHIMI. Evaluation of climate change effects on extreme flows in a catchment of western Iran[J]. Front. Earth Sci., 2019, 13(3): 523-534.
[3] Duanyang XU, Alin SONG, Dajing LI, Xue DING, Ziyu WANG. Assessing the relative role of climate change and human activities in desertification of North China from 1981 to 2010[J]. Front. Earth Sci., 2019, 13(1): 43-54.
[4] Chunlan LI, Jun WANG, Richa HU, Shan YIN, Yuhai BAO, Yuwei LI. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009[J]. Front. Earth Sci., 2018, 12(2): 420-430.
[5] N.B.H. VENABLE. Hydroclimatological data and analyses from a headwaters region of Mongolia as boundary objects in interdisciplinary climate change research[J]. Front. Earth Sci., 2017, 11(3): 457-468.
[6] Xin JIA,Shuangwen YI,Yonggang SUN,Shuangye WU,Harry F. LEE,Lin WANG,Huayu LU. Spatial and temporal variations in prehistoric human settlement and their influencing factors on the south bank of the Xar Moron River, Northeastern China[J]. Front. Earth Sci., 2017, 11(1): 137-147.
[7] Dengpan XIAO,Yongqing QI,Zhiqiang LI,Rende WANG,Juana P. MOIWO,Fengshan LIU. Impact of thermal time shift on wheat phenology and yield under warming climate in the Huang-Huai-Hai Plain, China[J]. Front. Earth Sci., 2017, 11(1): 148-155.
[8] Le Wang,Shenglian Guo,Xingjun Hong,Dedi Liu,Lihua Xiong. Projected hydrologic regime changes in the Poyang Lake Basin due to climate change[J]. Front. Earth Sci., 2017, 11(1): 95-113.
[9] David BRAND,Chathurika WIJEWARDANA,Wei GAO,K. Raja REDDY. Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth[J]. Front. Earth Sci., 2016, 10(4): 607-620.
[10] Guanghui DONG,Honggao LIU,Yishi YANG,Ying YANG,Aifeng ZHOU,Zhongxin WANG,Xiaoyan REN,Fahu CHEN. Emergence of ancient cities in relation to geopolitical circumstances and climate change during late Holocene in northeastern Tibetan Plateau, China[J]. Front. Earth Sci., 2016, 10(4): 669-682.
[11] Jing WU,Lichun TANG,Rayman MOHAMED,Qianting ZHU,Zheng WANG. Modeling and assessing international climate financing[J]. Front. Earth Sci., 2016, 10(2): 253-263.
[12] He ZHANG,Fulu TAO,Dengpan XIAO,Wenjiao SHI,Fengshan LIU,Shuai ZHANG,Yujie LIU,Meng WANG,Huizi BAI. Contributions of climate, varieties, and agronomic management to rice yield change in the past three decades in China[J]. Front. Earth Sci., 2016, 10(2): 315-327.
[13] Brooke B. OSBORNE,Jill S. BARON,Matthew D. WALLENSTEIN. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats[J]. Front. Earth Sci., 2016, 10(1): 1-12.
[14] Zhuoran LIANG,Tingting GU,Zhan TIAN,Honglin ZHONG,Yuqi LIANG. Agro-climatic adaptation of cropping systems under climate change in Shanghai[J]. Front. Earth Sci., 2015, 9(3): 487-496.
[15] Djakanibé Désiré TRAORÉ,Yansheng GU,Humei LIU,Ceven SHEMSANGA,Jiwen GE. Vegetation types and climate conditions reflected by the modern phytolith assemblages in the subalpine Dalaoling Forest Reserve, central China[J]. Front. Earth Sci., 2015, 9(2): 268-275.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed