Please wait a minute...

Frontiers of Earth Science

Front. Earth Sci.    2019, Vol. 13 Issue (2) : 410-421
Terrain relief periods of loess landforms based on terrain profiles of the Loess Plateau in northern Shaanxi Province, China
Jianjun CAO1,2, Guoan TANG1, Xuan FANG1,2(), Jilong LI1, Yongjuan LIU2, Yiting ZHANG2, Ying ZHU2, Fayuan LI1()
1. Key Laboratory of Virtual Geographic Environment of Ministry of Education, Nanjing Normal University, Nanjing 210023, China
2. School of Environment Science, Nanjing Xiaozhuang University, Nanjing 211171, China
Download: PDF(2640 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

The Loess Plateau is densely covered by numerous types of gullies which represent different soil erosion intensities. Therefore, research on topographic variation features of the loess gullies is of great significance to environmental protection and ecological management. Using a 5 m digital elevation model and data from a national geographic database, this paper studies different topographical areas of the Loess Plateau, including Shenmu, Suide, Yanchuan, Ganquan, Yijun, and Chunhua, to derive representative gully terrain profile data of the sampled areas. First, the profile data are standardized in MATLAB and then decomposed using the ensemble empirical mode decomposition method. Then, a significance test is performed on the results; the test confidence is 95% to 99%. The most reliable decomposition component is then used to calculate the relief period and size of the gullies. The results showed that relief periods of the Chunhua, Shenmu, Yijun, Yuanchuan, Ganquan, and Suide gullies are 1110.14 m, 1096.85 m, 1002.49 m, 523.48 m, 498.12 m, and 270.83 m, respectively. In terms of gully size, the loess landforms are sorted as loess fragmented tableland, aeolian and dune, loess tableland, loess ridge, loess hill and loess ridge, and loess hill, in descending order. Taken together, the gully terrain features of the sample areas and the results of the study are approximately consistent with the actual terrain profiles. Thus, we conclude that ensemble empirical mode decomposition is a reliable method for the study of the relief and topography of loess gullies.

Keywords loess gully      DEM      terrain profile      EEMD      Loess Plateau     
Corresponding Authors: Xuan FANG,Fayuan LI   
Just Accepted Date: 29 November 2018   Online First Date: 27 December 2018    Issue Date: 16 May 2019
 Cite this article:   
Jianjun CAO,Guoan TANG,Xuan FANG, et al. Terrain relief periods of loess landforms based on terrain profiles of the Loess Plateau in northern Shaanxi Province, China[J]. Front. Earth Sci., 2019, 13(2): 410-421.
E-mail this article
E-mail Alert
Articles by authors
Jianjun CAO
Guoan TANG
Jilong LI
Yongjuan LIU
Yiting ZHANG
Ying ZHU
Fayuan LI
Fig.1  The study area and sampling sites.
Sampling sites Geographic location Landform types Location description
Shenmu 109°40′00″–110°54′00″E
Aeolian and dune In Shenmu sample area, elevation is 1060–1322 m, with an average slope of 9° and gully density of 3.4 km/km2. Contiguous low hills covered by thin layers of sand and gently inclined dunes are found throughout this region
Suide 110°15′00″–110°22′30″E
Loess hill In Suide sample area, elevation is 847–1163 m, with an average slope of 29° and gully density of 6.52 km/km2. The area is hilly and crisscrossed with gullies, with extremely severe soil erosion
Yanchuan 109°52′30″–110°00′00″E
Loess ridge-hill In Yanchuan sample area, elevation is 953–1252 m, with an average slope of 31° and gully density of 6.78 km/km2. Rills and ephemeral gullies have developed on the ridges, and gulches, ditches, and streams have incised deeply below the loess ridges and hills
Ganquan 109°30′00″–109°37′30″E
Loess ridge In Ganquan sample area, elevation is 1149–1445 m, with an average slope of 27° and gully density of 5.6 km/km2. Ridge slopes are eroded, and intense down-incising gulches and streams occur between ridges
Yijun 109°18′45″–109°26′15″E
Loess tableland In Yijun sample area, elevation is 797–1134 m, with an average slope of 19° and gully density of 4.2 km/km2. Headward gully erosion is extremely severe, and gravitational erosion is active in this area
Chunhua 108°22′30″–108°30′00″E
Loess fragmented tableland In Chunhua sample area, elevation is 768–1164 m, with an average slope of 12° and gully density of 3.13 km/km2. The loess tableland and residual tableland are the primary landforms of this area, but these have been deeply incised by a number of large gullies
Tab.1  Geographic description of the study sites
Fig.2  The six types of loess landform and the profile of gully, (a) Shenmu; (b) Suide; (c) Yanchuan; (d) Ganquan; (e) Yijun; (f) Chunhua.
Fig.3  The decomposition by EEMD of gully topographic in Shenmu site.
Fig.4  The decomposition by EEMD of gully topographic in Suide site.
Fig.5  The decomposition by EEMD of gully topographic in Yanchuan site.
Fig.6  The decomposition by EEMD of gully topographic in Ganquan site.
Fig.7  The decomposition by EEMD of gully topographic in Yijun site.
Fig.8  The decomposition by EEMD of gully topographic in Chunhua site.
Sampling site Parameters IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 RES
Shenmu Variance contribution rate% 0.0229 0.0081 0.0087 0.0312 0.0342 0.0299 0.0962 0.3453 0.7733 0.001 98.65
Relief period/m 3.1673 6.7018 13.863 29.47 57.79 120.27 296.67 1483.3 2225 2225 --
Confidence level >99% >99% >99% >99% >99% >99% >99% >99% <95% <95% --
Suide Variance contribution rate% 0.0289 0.0118 0.0116 0.0183 0.0296 0.0509 0.1622 0.4577 0.3758 0.1268 98.73
Relief period/m 3.2411 6.7226 13.815 29.87 58.168 120.13 325.06 690.75 1105.2 1842 --
Confidence level >99% >99% >99% >99% >99% <95% >99% >99% >99% >99% --
Yanchuan Variance contribution rate% 0.0201 0.0091 0.0179 0.0316 0.0842 0.0615 0.0456 1.1462 0.1434 -- 98.44
Relief period/m 3.21 6.8942 14.392 29.776 63.963 115.13 431.75 690.8 1727 -- --
Confidence level >99% >99% >99% >99% >99% >99% <95% >99% >99% -- --
Ganquan Variance contribution rate% 0.0207 0.0091 0.0077 0.0118 0.0329 0.0384 0.8343 0.0747 0.1731 -- 98.80
Relief period/m 3.1089 6.6753 14.212 28.294 57.111 128.5 308.4 1542 1542 -- --
Confidence level >99% >99% >99% >99% >99% >99% >99% >99% >99% -- --
Yijun Variance contribution rate% 0.0214 0.0074 0.0063 0.0085 0.0115 0.0075 0.0099 0.6132 0.0185 0.0641 99.23
Relief period/m 3.2036 6.5079 13.289 29.092 55.485 109.84 207 768.86 1794 2691 --
Confidence level >99% >99% >99% >99% >99% >99% >99% >99% >99% >99% --
Chunhua Variance contribution rate% 0.0248 0.0089 0.0071 0.0466 0.0583 0.1512 0.0406 0.0176 0.0578 -- 99.59
Relief period/m 3.2441 6.3869 13.556 28.629 62.03 124.06 372.18 454.89 1023.5 -- --
Confidence level >99% >99% >99% >99% >99% >99% >99% <95% <95% -- --
Tab.2  The parameters of significance test by Monte Carlo of six study sites in Loess Plateau
Fig.9  The significance test by Monte Carlo of gully topographic relief periods in six study sites. (a) Shenmu; (b) Suide; (c) Yanchuan; (d) Ganquan; (e) Yijun; (f) Chunhua.
1 TAlexandrov (2009). A method of trend extraction using singular spectrum analysis. Revstat Stat J, 7(1): 1–22
2 J PAvouac, J F Dobremez, L Bourjot (1996). Palaeoclimatic interpretation of a topographic profile across middle Holocene regressive shorelines of Longmu Co (western Tibet). Palaeogeogr Palaeoclimatol Palaeoecol, 120(1–2): 93–104
3 A YAyenu-Prah, N OAttoh-Okine (2009). Comparative study of Hilbert–Huang transform, Fourier transform and wavelet transform in pavement profile analysis. VehSystDyn, 47(4): 437–456
4 HBlanco, R Lal (2010). Principles of Soil Conservation and Management. Springer, 1–19
5 D WBurbank (1992). Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin. Nature, 357(6380): 680–683
6 Q GCai (2001). Soil erosion and management on the Loess Plateau. J GeogrSci, 11(1): 53–70
7 JCao, J Na, JLi, GTang, X Fang, LXiong (2017). Topographic spatial variation analysis of loess shoulder lines in the Loess Plateau of China based on MF-DFA. ISPRS Int J Geoinf, 6(5): 141–159
8 Y ZChen (1984). The classification of gully in hilly loess region the middle reaches of the yellow river. Scientia Geographica Sinica, 4(4): 321–327 (in Chinese)
9 YChen, J P Wilson, Q Zhu, QZhou (2012). Comparison of drainage-constrained methods for DEM generalization. Comput Geosci, 48: 41–49
10 YChen, Q Zhou (2013). A scale-adaptive DEM for multi-scale terrain analysis. Int J Geogr Inf Sci, 27(7): 1329–1348
11 HCheng, X Zou, YWu, CZhang, QZheng, ZJiang (2007). Morphology parameters of ephemeral gully in characteristics hillslopes on the Loess Plateau of China. Soil Tillage Res, 94(1): 4–14
12 J DDavis, J D Chojnacki (2017). Two-dimensional discrete Fourier transform analysis of karst and coral reef morphologies. Trans GIS, 21(3): 521–545
13 ADoglioni, V Simeone (2014). Geomorphometric analysis based on discrete wavelet transform. Environ Earth Sci, 71(7): 3095–3108
14 EFielding, B Isacks, MBarazangi, CDuncan (1994). How flat is Tibet? Geology, 22(2): 163–167<0163:HFIT>2.3.CO;2
15 PFrederiksen (1981). Terrain analysis and accuracy prediction by means of the Fourier transformation. Photogrammetria, 36(4): 145–157
16 BFu, S Wang, YLiu, JLiu, W Liang, CMiao (2017). Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu Rev Earth Planet Sci, 45(1): 223–243
17 J THack (1973). Stream-profile analysis and stream-gradient index. J Res US GeolSurv, 1(4): 421–429
18 J THanley (1977). Fourier analysis of the Catawba Mountain knolls, Roanoke county, Virginia. J Int Assoc Math Geol, 9(2): 159–163
19 J MHarrison, C P Lo (1996). PC-based two-dimensional discrete Fourier transform programs for terrain analysis. Comput Geosci, 22(4): 419–424
20 R EHorton (1945). Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol Soc Am Bull, 56(3): 275–370[275:EDOSAT]2.0.CO;2
21 N EHuang, Z Shen, S RLong, M CWu, H HShih, QZheng, H HLiu (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 454(1971): 903–995
22 WJiang, Z Han, JZhang, QJiao (2016). Stream profile analysis, tectonic geomorphology and neotectonic activity of the Damxung-Yangbajain rift in the south Tibetan Plateau. Earth Surf Process Landf, 41(10): 1312–1326
23 A LLei, K L Tang, W L Wang (2000). Significant and character of conception of soil erosion chain. J Soil Water Conserv, 14(3): 79–83(in Chinese)
24 FLi, G Tang, CWang, LCui, R Zhu (2016). Slope spectrum variation in a simulated loess watershed. Front Earth Sci, 10(2): 328–339
25 X TLi, G X Zhu, H Q Cao, F Y Peng (2007). Anisotropy multi-scale self-similarity random field and terrain construction.  Journal of Image and Graphics,  12(7): 1286–1290 (in Chinese)
26 Z LLi (2008). Multi-scale digital terrain modelling and analysis. In: Zhou Q, Lees B, Tang G, eds. Advances in Digital Terrain Analysis. Lecture Notes in Geoinformation and Cartography. Berlin, Heidelberg: Springer, 59–83
27 ZLi, Y Zhang, QZhu, YHe, W Yao (2015). Assessment of bank gully development and vegetation coverage on the Chinese Loess Plateau. Geomorphology, 228: 462–469
28 D SLiu, Z Ding, ZGuo (1991).  Loess, Environment, and Global Change. Beijing: Science Press
29 Y BLiu, X M Zhu, P H Zhou (1988). The laws of hillslope channel erosion occurrence and development on loess plateau. Memoir of NISWC Academia Sinica, 7(1): 9–18 (in Chinese)
30 L XLuo (1956). A tentative classification of landforms in the Loess Plateau. J Geogr Sci, 22(3): 201–222
31 TMa, Y Chen, YHua, ZChen, X Chen, CLin, CYang (2017). DEM generalization with profile simplification in four directions. Earth Sci Inform, 10(1): 29–39
32 J TPerron, J W Kirchner, W E Dietrich (2008). Spectral signatures of characteristic spatial scales and nonfractal structure in landscapes. J Geophys Res Earth Surf, 113(F4): F04003
33 R JPike, W J Rozema (1975). Spectral analysis of landforms. Ann Assoc Am Geogr, 65(4): 499–516
34 J NRayner (1972). The application of harmonic and spectral analysis to the study of terrain. In: Chorley R J, ed. Spatial Analysis in Geomorphology. London: Methuen & Co. Ltd., 283–302
35 WSun, Q Shao, JLiu, JZhai (2014). Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena, 121: 151–163
36 TSvoray, H Markovitch (2009). Catchment scale analysis of the effect of topography, tillage direction and unpaved roads on ephemeral gully incision. Earth Surf Process Landf, 34(14): 1970–1984
37 KTang, K Zhang, ALei (1998). Critical slope gradient for compulsory abandonment of farmland on the hilly Loess Plateau. Chin Sci Bull, 43(5): 409–412
38 TTelbisz, G Kovács, BSzékely, JSzabó (2013). Topographic swath profile analysis: a generalization and sensitivity evaluation of a digital terrain analysis tool. Z Geomorphol, 57(4): 485–513
39 DTorri, J Poesen (2014). A review of topographic threshold conditions for gully head development in different environments. Earth Sci Rev, 130: 73–85
40 CValentin, J Poesen, YLi (2005). Gully erosion: impacts, factors and control. Catena, 63(2–3): 132–153
41 KVandaele, J Poesen, GGovers, Bvan Wesemael (1996). Geomorphic threshold conditions for ephemeral gully incision. Geomorphology, 16(2): 161–173
42 FWu (2003). Scale-dependent representations of relief based on wavelet analysis. Geo Spat Inf Sci, 6(1): 66–69
43 ZWu, N E Huang (2004). A study of the characteristics of white noise using the empirical mode decomposition method. In:  Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 460(2046): 1597–1611
44 ZWu, N E Huang (2005). Statistical significance test of intrinsic mode functions. Hilbert–Huang Transform and Its Applications. World Scientific Publishing Co. Pte. Ltd., 107–127
45 ZWu, N E Huang (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal, 1(1): 1–41
46 MXu, Q Li, GWilson (2016). Degradation of soil physicochemical quality by ephemeral gully erosion on sloping cropland of the hilly Loess Plateau, China. Soil Tillage Res, 155: 9–18
47 QYu, J Tian, JLiu (2004). A NOVEL contour-based 3D terrain matching algorithm using wavelet transform. Pattern Recognit Lett, 25(1): 87–99
48 H PZhang, S F Liu, Y P Sun, Y S Chen (2006a). The acquisition of local topographic relief and its application: an SRTM-DEM analysis. Remote Sensing for Land & Resources, 18(1): 31–35 (in Chinses)
49 H PZhang, S F Liu, N Yang, Y QZhang, G WZhang (2006b). Geomorphic characteristics of the Minjiang drainage basin (eastern Tibetan Plateau) and its tectonic implications: new insights from a digital elevation model study. Isl Arc, 15(2): 239–250
50 L TZhang, Z B Li, H Wang, J BXiao (2016a). Influence of intra-event-based flood regime on sediment flow behavior from a typical agro-catchment of the Chinese Loess Plateau. J Hydrol (Amst), 538: 71–81
51 L TZhang, Z B Li, S S Wang (2016b). Spatial scale effect on sediment dynamics in basin-wide floods within a typical agro-watershed: a case study in the hilly loess region of the Chinese Loess Plateau. Sci Total Environ, 572: 476–486
52 GZhao, X Mu, ZWen, FWang, P Gao (2013). Soil erosion, conservation, and eco-environment changes in the loess plateau of China. Land Degrad Dev, 24(5): 499–510
53 S MZhao, W M Cheng, C H Zhou, X Chen (2009). Analysis on the topographic gradient and geographical meaning of Mt. Konggur, in the northern edge of Qinghai-Tibet Plateau. Journal of Geo-information Sciences, 11(6): 753–758 (in Chinese)
54 T XZhu (2012). Gully and tunnel erosion in the hilly Loess Plateau region, China. Geomorphology, 153–154: 144–155
55 X MZhu (1956). Classification on the soil erosion in the loess region. Acta Pedologica Sinica, 4(2): 99–115 (in Chinese)
56 B WZou, W F Ma, Y Long, S SHou, LZhang (2011). Extraction method of swath profile based on ArcGIS and its application in landform analysis. Geography and Geo-Information Science, 27(3): 42–44 (in Chinese)
Related articles from Frontiers Journals
[1] Guiyun ZHOU, Hongqiang WEI, Suhua FU. A fast and simple algorithm for calculating flow accumulation matrices from raster digital elevation[J]. Front. Earth Sci., 2019, 13(2): 317-326.
[2] Xin YANG, Jiaming NA, Guoan TANG, Tingting WANG, Axing ZHU. Bank gully extraction from DEMs utilizing the geomorphologic features of a loess hilly area in China[J]. Front. Earth Sci., 2019, 13(1): 151-168.
[3] Parham PAHLAVANI, Behnaz BIGDELI. A mutual information-Dempster-Shafer based decision ensemble system for land cover classification of hyperspectral data[J]. Front. Earth Sci., 2017, 11(4): 774-783.
[4] Yue LIU,Qiuming CHENG,Qinglin XIA,Xinqing WANG. The use of evidential belief functions for mineral potential mapping in the Nanling belt, South China[J]. Front. Earth Sci., 2015, 9(2): 342-354.
[5] Huan LI,Dingyi XU,Yan ZHAO. Peatland area change in the southern Altay Mountains over the last twenty years based on GIS and RS analysis[J]. Front. Earth Sci., 2014, 8(4): 558-563.
[6] Maotian LI,Jianzhong GE,Jens KAPPENBERG,Dagmar MUCH,Ohle NINO,Zhongyuan CHEN. Morphodynamic processes of the Elbe River estuary, Germany: the Coriolis effect, tidal asymmetry and human dredging[J]. Front. Earth Sci., 2014, 8(2): 181-189.
[7] Qing ZHAO, Wei GAO, Weining XIANG, Runhe SHI, Chaoshun LIU, Tianyong ZHAI, Hung-lung Allen HUANG, Liam E. GUMLEY, Kathleen STRABALA. Analysis of air quality variability in Shanghai using AOD and API data in the recent decade[J]. Front Earth Sci, 2013, 7(2): 159-168.
[8] Shouke WEI, Albrecht GNAUCK, Alin LEI. Simulation analysis of domestic water demand and its future uncertainty in water scarce areas[J]. Front Earth Sci Chin, 2009, 3(3): 349-360.
Full text