Please wait a minute...

Frontiers of Earth Science

Front. Earth Sci.    2015, Vol. 9 Issue (2) : 192-201     DOI: 10.1007/s11707-014-0461-8
RESEARCH ARTICLE |
Assimilation of HY-2A scatterometer sea surface wind data in a 3DVAR data assimilation system–A case study of Typhoon Bolaven
Yi YU1,*(),Weimin ZHANG1,Zhongyuan WU1,Xiaofeng YANG2,Xiaoqun CAO1,Mengbin ZHU1
1. National University of Defense Technology, Changsha 410073, China
2. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
Download: PDF(1381 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The scatterometer (SCAT) on-board China’s HY-2A satellite has the capability to provide high resolution wind vector information over the global ocean surface. These wind vector data produced by the HY-2A scatterometer (HY-2A SCAT) are available to the data assimilation system with real-time information of high accuracy. In this paper, two experiments are designed to investigate the impact of HY-2A SCAT data in the three-dimensional variational assimilation system for the Weather Research and Forecast model (WRF 3DVAR). The powerful Typhoon Bolaven, which struck South Korea in August 2012, is selected for this case study. The results clearly demonstrate that HY-2A SCAT data can effectively complement the scarce observations over the ocean surface and improve the prediction of the wind and pressure fields of a typhoon. The case study of Typhoon Bolaven exhibits the significant and positive impact of HY-2A SCAT data on the numerical prediction of the tropical cyclone track.

Keywords HY-2A      scatterometer      data assimilation      sea surface wind      3DVAR     
Corresponding Authors: Yi YU   
Online First Date: 19 November 2014    Issue Date: 30 April 2015
 Cite this article:   
Yi YU,Xiaofeng YANG,Xiaoqun CAO, et al. Assimilation of HY-2A scatterometer sea surface wind data in a 3DVAR data assimilation system–A case study of Typhoon Bolaven[J]. Front. Earth Sci., 2015, 9(2): 192-201.
 URL:  
http://journal.hep.com.cn/fesci/EN/10.1007/s11707-014-0461-8
http://journal.hep.com.cn/fesci/EN/Y2015/V9/I2/192
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yi YU
Xiaofeng YANG
Xiaoqun CAO
Mengbin ZHU
Weimin ZHANG
Zhongyuan WU
Fig.1  The locations of NDBC buoys in this study (a) and comparison of the wind speed observed by HY-2A SCAT products with buoy data (b)
Fig.2  The horizontal (grids) distribution for the model domain (a) and the HY-2A SCAT wind observations in the vicinity of Typhoon Bolaven on 25 August 2012 (b)
Fig.3  Analysis of Typhoon Bolaven at 0600 UTC 25 August 2012. (a) First guess of the wind speed and the MSLP (hPa); the arrow above 50 indicates that the wind speed is 50 m/s with this length. (b) Analysis increments of the wind speed and the MSLP, the arrow above 10 indicates that the wind speed is 10 m/s with this length.
Fig.4  The zonal vertical sections of Typhoon Bolaven valid at 0600 UTC 25 2012: temperature anomaly (K) from CTRL (a) and HSCAT (b); wind speed anomaly (m/s) from CTRL (c) and HSCAT (d); geopotential height anomaly (gpm) from CTRL (e) and HSCAT (f)
Fig.5  (a) Tracks of Typhoon Bolaven (2012). The black line represents the best track. The red line represents the HSCAT runs starting at 0600 UTC 25 August 2012. The blue line represents the CTRL runs for the same time. (b) The track errors of Bolaven for 66 hours. The red line represents the CTRL runs, and the black line represents the HSCAT runs.
1 Andrews P L, Bell R S (1998). Optimizing the United Kingdom Meteorological Office data assimilation for ERS-1 scatterometer winds. Mon Weather Rev, 126(3): 736–746
doi: 10.1175/1520-0493(1998)126<0736:OTUKMO>2.0.CO;2
2 Barker D M, Huang W, Guo Y R, Bourgeois A J, Xiao Q N (2004). A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon Weather Rev, 132(4): 897–914
doi: 10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2
3 de Chiara G, Janssen P, Hersbach H, Bormann N (2012). Assimilation of scatterometer winds at ECMWF. ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom, 1–8
4 Dong X, Xu K, Liu H, Jiang J (2004). The radar altimeter and scatterometer of China’s HY-2 satellite. In: Geoscience and Remote Sensing Symposium, 2004. IGARSS'04. Proceedings. 2004 IEEE International. IEEE, 2004, (3): 1703–1706
5 Ebuchi N, Graber H C, Caruso M J (2002). Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J Atmos Ocean Technol, 19(12): 2049–2062
doi: 10.1175/1520-0426(2002)019<2049:EOWVOB>2.0.CO;2
6 Gu J F, Xiao Q N, Kuo Y H, Barker D M, Xue J S, Ma X X (2005). Assimilation and simulation of typhoon Rusa (2002) using the WRF system. Adv Atmos Sci, 22(3): 415–427
doi: 10.1007/BF02918755
7 Hilburn K A, Wentz F J, Smith D K, Ashcroft P D (2006). Correcting active scatterometer data for the effects of rain using passive radiometer data. J Appl Meteorol Climatol, 45(3): 382–398
doi: 10.1175/JAM2357.1
8 Hong S Y, Lim J O J (2006). The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteor Soc, 42(2): 129–151
9 Ide K, Courtier P, Ghil M, Lorenc A C (1997). Unified notation for data assimilation: Operational, sequential, and variational. J Meteorol Soc Jpn, 75(1B): 181–189
10 Katsaros K B, Forde E B, Chang P, Liu W T (2001). QuikSCAT's sea winds facilitates early identification of tropical depressions in 1999 hurricane season. Geophys Res Lett, 28(6): 1043–1046
doi: 10.1029/2000GL011646
11 Katsaros K B, Vachon P W, Liu W T, Black P G (2002). Microwave remote sensing of tropical cyclones from space. J Oceanogr, 58(1): 137–151
doi: 10.1023/A:1015884903180
12 Leidner S M, Isaksen L, Hoffman R N (2003). Impact of NSCAT Winds on Tropical Cyclones in the ECMWF 4DVAR Assimilation System. Mon Weather Rev, 131(1): 3–26
doi: 10.1175/1520-0493(2003)131<0003:IONWOT>2.0.CO;2
13 Li X F, Zhang J A, Yang X F, Pichel W G, DeMaria M, Long D, Li Z (2013). Tropical Cyclone Morphology from Spaceborne Synthetic Aperture Radar. Bull Am Meteorol Soc, 94(2): 215–230
doi: 10.1175/BAMS-D-11-00211.1
14 Lin M S (2008). The contribution of global ocean observation of continuity of HY-2 satellite. In: National Satellite Oceanic Application Service. SOA, China: 1–22
15 Liu W T (2002). Progress in Scatterometer Application. J Oceanogr, 58(1): 121–136
doi: 10.1023/A:1015832919110
16 Lorenc A C (1986). Analysis method for numerical weather prediction. Q J R Meteorol Soc, 112(474): 1177–1194
doi: 10.1002/qj.49711247414
17 Parrish D F, Derber J C (1992). The National Meteorological Center's spectral statistical-interpolation analysis system. Mon Weather Rev, 120(8): 1747–1763
doi: 10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
18 Prasad V S, Gupta A, Rajagopal E N, Basu S (2013). Impact of OSCAT surface wind data on T574L64 assimilation and forecasting system – a study involving tropical cyclone Thane. Curr Sci, 104(5): 627–631
19 Rogers R, Chen S, Tenerelli J, Willoughby H (2003). A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon Weather Rev, 131(8): 1577–1599
doi: 10.1175//2546.1
20 Rufenach C (1998). Comparison of four ERS-1 scatterometer wind retrieval algorithms with buoy measurements. J Atmos Ocean Technol, 15(1): 304–313
doi: 10.1175/1520-0426(1998)015<0304:COFESW>2.0.CO;2
21 Shin H H, Hong S Y (2011). Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Boundary-Layer Meteorol, 139(2): 261–281
doi: 10.1007/s10546-010-9583-z
22 Singh K P, Gray A L, Hawkins R K, O'Neil R A (1986). The influence of surface oil on C-and Ku-band ocean backscatter. IEEE Trans Geosci Rem Sens, GE-24(5): 738–744
doi: 10.1109/TGRS.1986.289622
23 Skamarock W C, Klemp J B, Dudhia J (2001). Prototypes for the WRF (Weather Research and Forecasting) model. In: Preprints, Ninth Conf. Mesoscale Processes, J11–J15, Amer. Meteorol. Soc., Fort Lauderdale, FL
24 Thomas B R, Kent E C, Swail V R (2005). Methods to homogenize wind speeds from ships and buoys. Int J Climatol, 25(7): 979–995
doi: 10.1002/joc.1176
25 Tomassini M, LeMeur D, Saunders R W (1998). Near-surface satellite wind observations of hurricanes and their impact on ECMWF model analyses and forecasts. Mon Weather Rev, 126(5): 1274–1286
doi: 10.1175/1520-0493(1998)126<1274:NSSWOO>2.0.CO;2
26 Wang X, Liu L, Shi H, Dong X, Zhu D (2012). In-orbit calibration and performance evaluaiotn of HY-2 scatterometer. In: Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International IEEE: 4614–4616
27 Willemet J M, Lasserre-Bigorry A (2001). Satellite Data Assimilation: Impact on Tropical Cyclone Forecast
28 Yan J H (2004). China’S HY-1A ocean satellite and its applications. In: The Thirteenth Workshop of OMISAR, (2): 1–7
29 Yang X F, Li X F, Pichel W G, Li Z W (2011). Comparison of Ocean Surface Winds From ENVISAT ASAR, MetOp ASCAT Scatterometer, Buoy Measurements, and NOGAPS Model. IEEE Trans Geosci Rem Sens, 49(12): 4743–4750
doi: 10.1109/TGRS.2011.2159802
30 Zhang F, Weng Y, Sippel J A, Meng Z, Bishop C H (2009). Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon Weather Rev, 137(7): 2105–2125
doi: 10.1175/2009MWR2645.1
31 Zhang W M, Cao X Q, Song J Q (2012). Design and implementation of four-dimensional variational data assimilation system constrained by the global spectral model. Acta Phys Sin, 61(24): 249202
Related articles from Frontiers Journals
[1] Lu REN. A case study of GOES-15 imager bias characterization with a numerical weather prediction model[J]. Front. Earth Sci., 2016, 10(3): 409-418.
[2] Zhibin SUN, Lie-Yauw OEY, Yi-Hui ZHOU. Skill-assessments of statistical and Ensemble Kalman Filter data assimilative analyses using surface and deep observations in the Gulf of Mexico[J]. Front Earth Sci, 2013, 7(3): 271-281.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed