Assimilation of HY-2A scatterometer sea surface wind data in a 3DVAR data assimilation system–A case study of Typhoon Bolaven

Yi YU, Weimin ZHANG, Zhongyuan WU, Xiaofeng YANG, Xiaoqun CAO, Mengbin ZHU

PDF(1381 KB)
PDF(1381 KB)
Front. Earth Sci. ›› 2015, Vol. 9 ›› Issue (2) : 192-201. DOI: 10.1007/s11707-014-0461-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Assimilation of HY-2A scatterometer sea surface wind data in a 3DVAR data assimilation system–A case study of Typhoon Bolaven

Author information +
History +

Abstract

The scatterometer (SCAT) on-board China’s HY-2A satellite has the capability to provide high resolution wind vector information over the global ocean surface. These wind vector data produced by the HY-2A scatterometer (HY-2A SCAT) are available to the data assimilation system with real-time information of high accuracy. In this paper, two experiments are designed to investigate the impact of HY-2A SCAT data in the three-dimensional variational assimilation system for the Weather Research and Forecast model (WRF 3DVAR). The powerful Typhoon Bolaven, which struck South Korea in August 2012, is selected for this case study. The results clearly demonstrate that HY-2A SCAT data can effectively complement the scarce observations over the ocean surface and improve the prediction of the wind and pressure fields of a typhoon. The case study of Typhoon Bolaven exhibits the significant and positive impact of HY-2A SCAT data on the numerical prediction of the tropical cyclone track.

Keywords

HY-2A / scatterometer / data assimilation / sea surface wind / 3DVAR

Cite this article

Download citation ▾
Yi YU, Weimin ZHANG, Zhongyuan WU, Xiaofeng YANG, Xiaoqun CAO, Mengbin ZHU. Assimilation of HY-2A scatterometer sea surface wind data in a 3DVAR data assimilation system–A case study of Typhoon Bolaven. Front. Earth Sci., 2015, 9(2): 192‒201 https://doi.org/10.1007/s11707-014-0461-8

References

[1]
Andrews P L, Bell R S (1998). Optimizing the United Kingdom Meteorological Office data assimilation for ERS-1 scatterometer winds. Mon Weather Rev, 126(3): 736–746
CrossRef Google scholar
[2]
Barker D M, Huang W, Guo Y R, Bourgeois A J, Xiao Q N (2004). A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon Weather Rev, 132(4): 897–914
CrossRef Google scholar
[3]
de Chiara G, Janssen P, Hersbach H, Bormann N (2012). Assimilation of scatterometer winds at ECMWF. ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom, 1–8
[4]
Dong X, Xu K, Liu H, Jiang J (2004). The radar altimeter and scatterometer of China’s HY-2 satellite. In: Geoscience and Remote Sensing Symposium, 2004. IGARSS'04. Proceedings. 2004 IEEE International. IEEE, 2004, (3): 1703–1706
[5]
Ebuchi N, Graber H C, Caruso M J (2002). Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J Atmos Ocean Technol, 19(12): 2049–2062
CrossRef Google scholar
[6]
Gu J F, Xiao Q N, Kuo Y H, Barker D M, Xue J S, Ma X X (2005). Assimilation and simulation of typhoon Rusa (2002) using the WRF system. Adv Atmos Sci, 22(3): 415–427
CrossRef Google scholar
[7]
Hilburn K A, Wentz F J, Smith D K, Ashcroft P D (2006). Correcting active scatterometer data for the effects of rain using passive radiometer data. J Appl Meteorol Climatol, 45(3): 382–398
CrossRef Google scholar
[8]
Hong S Y, Lim J O J (2006). The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteor Soc, 42(2): 129–151
[9]
Ide K, Courtier P, Ghil M, Lorenc A C (1997). Unified notation for data assimilation: Operational, sequential, and variational. J Meteorol Soc Jpn, 75(1B): 181–189
[10]
Katsaros K B, Forde E B, Chang P, Liu W T (2001). QuikSCAT's sea winds facilitates early identification of tropical depressions in 1999 hurricane season. Geophys Res Lett, 28(6): 1043–1046
CrossRef Google scholar
[11]
Katsaros K B, Vachon P W, Liu W T, Black P G (2002). Microwave remote sensing of tropical cyclones from space. J Oceanogr, 58(1): 137–151
CrossRef Google scholar
[12]
Leidner S M, Isaksen L, Hoffman R N (2003). Impact of NSCAT Winds on Tropical Cyclones in the ECMWF 4DVAR Assimilation System. Mon Weather Rev, 131(1): 3–26
CrossRef Google scholar
[13]
Li X F, Zhang J A, Yang X F, Pichel W G, DeMaria M, Long D, Li Z (2013). Tropical Cyclone Morphology from Spaceborne Synthetic Aperture Radar. Bull Am Meteorol Soc, 94(2): 215–230
CrossRef Google scholar
[14]
Lin M S (2008). The contribution of global ocean observation of continuity of HY-2 satellite. In: National Satellite Oceanic Application Service. SOA, China: 1–22
[15]
Liu W T (2002). Progress in Scatterometer Application. J Oceanogr, 58(1): 121–136
CrossRef Google scholar
[16]
Lorenc A C (1986). Analysis method for numerical weather prediction. Q J R Meteorol Soc, 112(474): 1177–1194
CrossRef Google scholar
[17]
Parrish D F, Derber J C (1992). The National Meteorological Center's spectral statistical-interpolation analysis system. Mon Weather Rev, 120(8): 1747–1763
CrossRef Google scholar
[18]
Prasad V S, Gupta A, Rajagopal E N, Basu S (2013). Impact of OSCAT surface wind data on T574L64 assimilation and forecasting system – a study involving tropical cyclone Thane. Curr Sci, 104(5): 627–631
[19]
Rogers R, Chen S, Tenerelli J, Willoughby H (2003). A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon Weather Rev, 131(8): 1577–1599
CrossRef Google scholar
[20]
Rufenach C (1998). Comparison of four ERS-1 scatterometer wind retrieval algorithms with buoy measurements. J Atmos Ocean Technol, 15(1): 304–313
CrossRef Google scholar
[21]
Shin H H, Hong S Y (2011). Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Boundary-Layer Meteorol, 139(2): 261–281
CrossRef Google scholar
[22]
Singh K P, Gray A L, Hawkins R K, O'Neil R A (1986). The influence of surface oil on C-and Ku-band ocean backscatter. IEEE Trans Geosci Rem Sens, GE-24(5): 738–744
CrossRef Google scholar
[23]
Skamarock W C, Klemp J B, Dudhia J (2001). Prototypes for the WRF (Weather Research and Forecasting) model. In: Preprints, Ninth Conf. Mesoscale Processes, J11–J15, Amer. Meteorol. Soc., Fort Lauderdale, FL
[24]
Thomas B R, Kent E C, Swail V R (2005). Methods to homogenize wind speeds from ships and buoys. Int J Climatol, 25(7): 979–995
CrossRef Google scholar
[25]
Tomassini M, LeMeur D, Saunders R W (1998). Near-surface satellite wind observations of hurricanes and their impact on ECMWF model analyses and forecasts. Mon Weather Rev, 126(5): 1274–1286
CrossRef Google scholar
[26]
Wang X, Liu L, Shi H, Dong X, Zhu D (2012). In-orbit calibration and performance evaluaiotn of HY-2 scatterometer. In: Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International IEEE: 4614–4616
[27]
Willemet J M, Lasserre-Bigorry A (2001). Satellite Data Assimilation: Impact on Tropical Cyclone Forecast
[28]
Yan J H (2004). China’S HY-1A ocean satellite and its applications. In: The Thirteenth Workshop of OMISAR, (2): 1–7
[29]
Yang X F, Li X F, Pichel W G, Li Z W (2011). Comparison of Ocean Surface Winds From ENVISAT ASAR, MetOp ASCAT Scatterometer, Buoy Measurements, and NOGAPS Model. IEEE Trans Geosci Rem Sens, 49(12): 4743–4750
CrossRef Google scholar
[30]
Zhang F, Weng Y, Sippel J A, Meng Z, Bishop C H (2009). Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon Weather Rev, 137(7): 2105–2125
CrossRef Google scholar
[31]
Zhang W M, Cao X Q, Song J Q (2012). Design and implementation of four-dimensional variational data assimilation system constrained by the global spectral model. Acta Phys Sin, 61(24): 249202

Acknowledgments

This study was supported by the Special Scientific Research Project for Public Interest (GYHY201006015), the National Natural Science Foundation of China (Grant Nos. 41375113 and 41228007). The HY-2A wind speed products are obtained from the Chinese National Satellite Ocean Application Service (http://www.nsoas.gov.cn/NSOAS_En/index.html). The buoy wind data are downloaded from the NOAA/NDBC website (www.ndbc.noaa.gov).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1381 KB)

Accesses

Citations

Detail

Sections
Recommended

/