Assimilation of HY-2A scatterometer sea surface wind data in a 3DVAR data assimilation system–A case study of Typhoon Bolaven

Yi YU , Weimin ZHANG , Zhongyuan WU , Xiaofeng YANG , Xiaoqun CAO , Mengbin ZHU

Front. Earth Sci. ›› 2015, Vol. 9 ›› Issue (2) : 192 -201.

PDF (1381KB)
Front. Earth Sci. ›› 2015, Vol. 9 ›› Issue (2) : 192 -201. DOI: 10.1007/s11707-014-0461-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Assimilation of HY-2A scatterometer sea surface wind data in a 3DVAR data assimilation system–A case study of Typhoon Bolaven

Author information +
History +
PDF (1381KB)

Abstract

The scatterometer (SCAT) on-board China’s HY-2A satellite has the capability to provide high resolution wind vector information over the global ocean surface. These wind vector data produced by the HY-2A scatterometer (HY-2A SCAT) are available to the data assimilation system with real-time information of high accuracy. In this paper, two experiments are designed to investigate the impact of HY-2A SCAT data in the three-dimensional variational assimilation system for the Weather Research and Forecast model (WRF 3DVAR). The powerful Typhoon Bolaven, which struck South Korea in August 2012, is selected for this case study. The results clearly demonstrate that HY-2A SCAT data can effectively complement the scarce observations over the ocean surface and improve the prediction of the wind and pressure fields of a typhoon. The case study of Typhoon Bolaven exhibits the significant and positive impact of HY-2A SCAT data on the numerical prediction of the tropical cyclone track.

Keywords

HY-2A / scatterometer / data assimilation / sea surface wind / 3DVAR

Cite this article

Download citation ▾
Yi YU, Weimin ZHANG, Zhongyuan WU, Xiaofeng YANG, Xiaoqun CAO, Mengbin ZHU. Assimilation of HY-2A scatterometer sea surface wind data in a 3DVAR data assimilation system–A case study of Typhoon Bolaven. Front. Earth Sci., 2015, 9(2): 192-201 DOI:10.1007/s11707-014-0461-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrews P L, Bell R S (1998). Optimizing the United Kingdom Meteorological Office data assimilation for ERS-1 scatterometer winds. Mon Weather Rev, 126(3): 736–746

[2]

Barker D M, Huang W, Guo Y R, Bourgeois A J, Xiao Q N (2004). A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon Weather Rev, 132(4): 897–914

[3]

de Chiara G, Janssen P, Hersbach H, Bormann N (2012). Assimilation of scatterometer winds at ECMWF. ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom, 1–8

[4]

Dong X, Xu K, Liu H, Jiang J (2004). The radar altimeter and scatterometer of China’s HY-2 satellite. In: Geoscience and Remote Sensing Symposium, 2004. IGARSS'04. Proceedings. 2004 IEEE International. IEEE, 2004, (3): 1703–1706

[5]

Ebuchi N, Graber H C, Caruso M J (2002). Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J Atmos Ocean Technol, 19(12): 2049–2062

[6]

Gu J F, Xiao Q N, Kuo Y H, Barker D M, Xue J S, Ma X X (2005). Assimilation and simulation of typhoon Rusa (2002) using the WRF system. Adv Atmos Sci, 22(3): 415–427

[7]

Hilburn K A, Wentz F J, Smith D K, Ashcroft P D (2006). Correcting active scatterometer data for the effects of rain using passive radiometer data. J Appl Meteorol Climatol, 45(3): 382–398

[8]

Hong S Y, Lim J O J (2006). The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteor Soc, 42(2): 129–151

[9]

Ide K, Courtier P, Ghil M, Lorenc A C (1997). Unified notation for data assimilation: Operational, sequential, and variational. J Meteorol Soc Jpn, 75(1B): 181–189

[10]

Katsaros K B, Forde E B, Chang P, Liu W T (2001). QuikSCAT's sea winds facilitates early identification of tropical depressions in 1999 hurricane season. Geophys Res Lett, 28(6): 1043–1046

[11]

Katsaros K B, Vachon P W, Liu W T, Black P G (2002). Microwave remote sensing of tropical cyclones from space. J Oceanogr, 58(1): 137–151

[12]

Leidner S M, Isaksen L, Hoffman R N (2003). Impact of NSCAT Winds on Tropical Cyclones in the ECMWF 4DVAR Assimilation System. Mon Weather Rev, 131(1): 3–26

[13]

Li X F, Zhang J A, Yang X F, Pichel W G, DeMaria M, Long D, Li Z (2013). Tropical Cyclone Morphology from Spaceborne Synthetic Aperture Radar. Bull Am Meteorol Soc, 94(2): 215–230

[14]

Lin M S (2008). The contribution of global ocean observation of continuity of HY-2 satellite. In: National Satellite Oceanic Application Service. SOA, China: 1–22

[15]

Liu W T (2002). Progress in Scatterometer Application. J Oceanogr, 58(1): 121–136

[16]

Lorenc A C (1986). Analysis method for numerical weather prediction. Q J R Meteorol Soc, 112(474): 1177–1194

[17]

Parrish D F, Derber J C (1992). The National Meteorological Center's spectral statistical-interpolation analysis system. Mon Weather Rev, 120(8): 1747–1763

[18]

Prasad V S, Gupta A, Rajagopal E N, Basu S (2013). Impact of OSCAT surface wind data on T574L64 assimilation and forecasting system – a study involving tropical cyclone Thane. Curr Sci, 104(5): 627–631

[19]

Rogers R, Chen S, Tenerelli J, Willoughby H (2003). A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon Weather Rev, 131(8): 1577–1599

[20]

Rufenach C (1998). Comparison of four ERS-1 scatterometer wind retrieval algorithms with buoy measurements. J Atmos Ocean Technol, 15(1): 304–313

[21]

Shin H H, Hong S Y (2011). Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Boundary-Layer Meteorol, 139(2): 261–281

[22]

Singh K P, Gray A L, Hawkins R K, O'Neil R A (1986). The influence of surface oil on C-and Ku-band ocean backscatter. IEEE Trans Geosci Rem Sens, GE-24(5): 738–744

[23]

Skamarock W C, Klemp J B, Dudhia J (2001). Prototypes for the WRF (Weather Research and Forecasting) model. In: Preprints, Ninth Conf. Mesoscale Processes, J11–J15, Amer. Meteorol. Soc., Fort Lauderdale, FL

[24]

Thomas B R, Kent E C, Swail V R (2005). Methods to homogenize wind speeds from ships and buoys. Int J Climatol, 25(7): 979–995

[25]

Tomassini M, LeMeur D, Saunders R W (1998). Near-surface satellite wind observations of hurricanes and their impact on ECMWF model analyses and forecasts. Mon Weather Rev, 126(5): 1274–1286

[26]

Wang X, Liu L, Shi H, Dong X, Zhu D (2012). In-orbit calibration and performance evaluaiotn of HY-2 scatterometer. In: Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International IEEE: 4614–4616

[27]

Willemet J M, Lasserre-Bigorry A (2001). Satellite Data Assimilation: Impact on Tropical Cyclone Forecast

[28]

Yan J H (2004). China’S HY-1A ocean satellite and its applications. In: The Thirteenth Workshop of OMISAR, (2): 1–7

[29]

Yang X F, Li X F, Pichel W G, Li Z W (2011). Comparison of Ocean Surface Winds From ENVISAT ASAR, MetOp ASCAT Scatterometer, Buoy Measurements, and NOGAPS Model. IEEE Trans Geosci Rem Sens, 49(12): 4743–4750

[30]

Zhang F, Weng Y, Sippel J A, Meng Z, Bishop C H (2009). Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon Weather Rev, 137(7): 2105–2125

[31]

Zhang W M, Cao X Q, Song J Q (2012). Design and implementation of four-dimensional variational data assimilation system constrained by the global spectral model. Acta Phys Sin, 61(24): 249202

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1381KB)

1424

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/