Please wait a minute...

Frontiers of Chemical Science and Engineering

Front Chem Eng Chin    2009, Vol. 3 Issue (3) : 255-264     DOI: 10.1007/s11705-009-0008-9
RESEARCH ARTICLE |
Study on the crystal morphology and melting behavior of isothermally crystallized composites of short carbon fiber and poly(trimethylene terephthalate)
Mingtao RUN1(), Hongzan SONG1, Yanping HAO2
1. College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China; 2. College of Economics, Hebei University, Baoding 071002, China
Download: PDF(1040 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The spherulites of the short carbon fiber(SCF)/poly (trimethylene terephthalate) (PTT) composites formed in limited space at designed temperatures, and their melting behaviors were studied by the polarized optical microscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM), respectively. The results suggest that SCF content, isothermal crystallization temperatures, and the film thicknesses influence the crystal morphology of the composites. The dimension of the spherulites is decreased with increasing SCF content, but whether banded or nonbanded spherulites will form in the composites is not dependent on SCF content. However, the crystal morphology of the composites depends strongly on the temperature. When the isothermal crystallization temperatures increase from 180°C to 230°C, the crystal morphology of SCF/PTT composites continuously changes in the following order: nonbanded → banded → nonbanded spherulites. Discontinuous circle lines form in the film when the film thickness increases from 30 to 60 μm. Basing on the SEM observation, it is found that these circle lines are cracks formed due to the constriction difference of the different parts of the spherulites. These cracks are formed when the film is cooled from the isothermal crystallization temperature to the room temperature at a slow cooling rate; while they will disappear gradually at different temperatures in the heating process. The crack will appear/disappear first around the center of the spherulite when the film was cooled/heated. The nontwisted or slightly twisted lamellas will reorganize to form highly twisted lamellas inducing apparent banded texture of the spherulites.

Keywords poly(trimethylene terephthalate)      short carbon fiber      banded spherulites      crack     
Corresponding Authors: RUN Mingtao,Email:hyprmthyp@163.com   
Issue Date: 05 September 2009
 Cite this article:   
Mingtao RUN,Hongzan SONG,Yanping HAO. Study on the crystal morphology and melting behavior of isothermally crystallized composites of short carbon fiber and poly(trimethylene terephthalate)[J]. Front Chem Eng Chin, 2009, 3(3): 255-264.
 URL:  
http://journal.hep.com.cn/fcse/EN/10.1007/s11705-009-0008-9
http://journal.hep.com.cn/fcse/EN/Y2009/V3/I3/255
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mingtao RUN
Hongzan SONG
Yanping HAO
Fig.1  POM micrographs of the different SCF/PTT composites crystallized from melt at 205°C for 7 h with film thickness of about 30 μm
Fig.2  POM micrographs of the composites (SCF 2%) crystallized from melt at a variety of temperatures for 7 h with film thickness of about 30 μm
Fig.3  POM and OM micrographs of different composites after isothermally crystallized from melt at 205°C for 7 h; the film thickness is about 60 μm
Fig.4  SEM and AFM micrographs of circle lines on the composite’s film surface with different magnifications. (a) SEM, 250x; (b) SEM, 10000x; (c) AFM, 10000x; (d) SEM, 5000x; (e) SEM, 2500x; (f) SEM, 10000x
Fig.5  POM micrographs of the changing process of the circle lines in spherulites film with thickness of about 60 μm at a heating rate of 5°C/min
Fig.6  POM micrographs of the changing spherulites with thickness of about 60 μm at a heating rate of 5°C/min
1 Ho R M, Ke K Z, Chen M. Crystal structure and banded spherulite of poly(trimethylene terephthalate). Macromolecules , 2000, 33: 7529-7535
doi: 10.1021/ma000210w
2 Yun J H, Kuboyama K, Chiba T, Ougizawa T. Crystallization temperature dependence of interference color and morphology in poly(trimethylene terephthalate) spherulite. Polymer , 2006, 47: 4831-4838
doi: 10.1016/j.polymer.2006.04.031
3 Chuah H H. Orientation and structure development in poly(trimethylene terephthalate) tensile drawing. Macromolecules , 2001, 34: 6985-6993
doi: 10.1021/ma010317z
4 Run M T, Yao C G, Wang Y J, Gao J G. Isothermal crystallization kinetics and melting behaviors of nanocomposites of poly(trimethylene terephthalate) filled with nano-CaCO3. J Appl Polym Sci , 2007, 106: 1557-1567
doi: 10.1002/app.24996
5 Wang B J, Li C Y, Jennnifer H, Cheng S Z D, Geil P H, Grebowicz J, Ho R M. Poly(trimethylene terephthalate) crystal structure and morphology in different Length scales. Polymer , 2001, 42: 7171-7180
doi: 10.1016/S0032-3861(01)00046-5
6 Chuang W T, Hong P D, Chuah H H. Effects of crystallization behavior on morphological change in poly(trimethylene terephthalate) spherulites. Polymer , 2004, 45(7): 2413-2425
doi: 10.1016/j.polymer.2004.01.048
7 Liu Z J, Chen K Q, Yan D Y. Crystallization, morphology, and dynamic mechanical properties of poly(trimethylene terephthalate)/clay nanocomposites. Euro Polym J , 2003, 39: 2359-2366
doi: 10.1016/S0014-3057(03)00166-6
8 Chen J, Yang D C. Phase behavior and rhythmically grown ring-banded spherulites in blends of liquid crystalline poly(aryl ether ketone) and poly(aryl ether ether ketone). Macromolecules , 2005, 38: 3371-3379
doi: 10.1021/ma047904f
9 Keith H D, Padden F J. Ringed spherulites in polyethylene. J Polym Sci 1958, 31: 415
doi: 10.1002/pol.1958.1203112316
10 Schultz J M, Kinloch D R. Transverse screw dislocations: A source of twist in crystalline polymer ribbons. Polymer , 1969, 10: 271-278
doi: 10.1016/0032-3861(69)90039-1
11 Bassett D C, Hodge A M. On lamellar organization in banded spherulites of polyethylene. Polymer , 1978, 19: 469-472
doi: 10.1016/0032-3861(78)90262-8
12 Keller A., Windle A. H. The origin of banded textures induced by shear—a suggested scheme and a relevant rheological effect. J Non-Newtonian Fluid Mechanics , 1996, 67: 241-268
doi: 10.1016/S0377-0257(96)01482-6
13 Keith H D, Padden F J. Twisting orientation and the role of transient states in polymer crystallization. Polymer , 1984, 25: 28-42
doi: 10.1016/0032-3861(84)90264-7
14 Keith H D, Padden F J. Banding in polyethylene and other spherulite. Macromolecules , 1996, 29: 7776
doi: 10.1021/ma960634j
15 Keith H D. Banding in spherulites: two recurring topics. Polymer 2001, 42: 09987-09993 .
doi: 10.1016/S0032-3861(01)00498-0
16 Patel D, Bassett D C. On the formation of S-profiled lamellae in polyethylene and the genesis of banded spherulites. Polymer , 2002, 43: 3795-3802
doi: 10.1016/S0032-3861(02)00178-7
17 Lot B, Cheng S Z D. A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals. Polymer , 2005, 46: 577-610
doi: 10.1016/j.polymer.2004.07.042
18 Bassett D C. A critical assessment of unbalanced surface stresses: some complementary considerations. Polymer , 2006, 47: 3263-3266
doi: 10.1016/j.polymer.2005.11.089
19 Lot B, Cheng S Z D. Comments on:'a critical assessment of unbalanced surface stresses: some complementary considerations’, by DC Bassett. Polymer , 2006, 46: 3267-3270
20 Chen E J H, Hsiao B S. The effects of transcrystalline interphase in advanced polymer composites. Polym Eng Sci , 1992, 32: 280-287
doi: 10.1002/pen.760320408
21 Li T Q, Zhang M Q, Zhang K, Zeng H M. Long-range effects of carbon fiber on crystallization of semicrystalline thermoplastics. Polymer , 2000, 41: 161-168
doi: 10.1016/S0032-3861(99)00140-8
22 Chi W, Liu C R. Transcrystallization of polypropylene on carbon fibers. Polymer , 1999, 40: 289-298
23 Sar?N, Sinmaz?lik T. Erosive wear behaviour of carbon fibre/polyetherimide composites under low particle speed. Mater and Design , 2007, 28: 351-355
24 Kaynak C, Orgun O, Tincer T. Matrix and interface modification of short carbon fiber-reinforced epoxy.βPolym Test 2005, 24: 455-462
doi: 10.1016/j.polymertesting.2005.01.004
25 Run M T, Song H Z, Yao C G, Wang Y J. Crystal Morphology and Nonisothermal Crystallization Kinetics of Short Carbon Fiber/Poly(trimethylene terephthalate) Composites. J Appl Polym Sci , 2007, 106: 868-877
doi: 10.1002/app.26661
26 Suryasarathi B, Arup R B, Pravin V K. Fractionated crystallization in PA6/ABS blends: Influence of a reactive compatibilizer and multiwall carbon nanotubes. Polymer , 2007, 48: 356-362
doi: 10.1016/j.polymer.2006.11.019
27 Wang Z G, Wang X H, Yu D H, Jiang B Z. The formation of ring-banded spherulites of poly(?-caprolactone) in its miscible mixtures with poly(styrene-co-acrylonitrile). Polymer , 1997, 38: 5897-5901
doi: 10.1016/S0032-3861(97)00225-5
28 Huang Y P, Luo X L, Ma D Z. Ringed spherulite morphology and compatibility in the binary blends of poly(?-caprolactone) with ethyl cellulose. Eur Polym J , 2001, 37: 2153-2157
doi: 10.1016/S0014-3057(01)00032-5
29 Bauer H, Owen A J. Some structural and mechanical properties of bacterially produced poly-β-hydroxybutyrate-co-β-hydroxyvalerate. Colloid Polym Sci , 1988, 266: 241-247
doi: 10.1007/BF01452586
30 Martinez S J, Sanchez C M, Barham P J, Keller A. Thermal expansion and spherulite cracking in 3-hydroxybutyrate/3-hydroxyvalerate copolymers. J Mater Sci Lett , 1989, 8: 490-492
doi: 10.1007/BF00720717
31 Ding J D, Zhu J X, Yang Y L. Banded spherulites of poly (ethylene oxide) and the concentric cracks within a single spherulite. Chem Res Chin Uni , 1996, 17(3): 489-499
32 Run M T, Hu X M, Gao J G. Morphology and thermal properties of the poly(lactic acid)/carboxylic polypropylene blends. Acta Polymerica Sinica , 2007, 12: 1121-1126
33 Xu J, Guo B H, Chen G Q. Terraces on Banded Spherulites of Polyhydroxyalkanoates. J Polym Sci: Part B: Polym Phys , 2003, 41: 2128-2134
doi: 10.1002/polb.10556
Related articles from Frontiers Journals
[1] Ruifang WANG, Zhanyong LI, Yanhua LI, Jingsheng YE. Soybean drying characteristics in microwave rotary dryer with forced convection[J]. Front Chem Eng Chin, 2009, 3(3): 289-292.
[2] LU Chunxi, LI Ruxin, SHI Mingxian, LIU Xiancheng. Gas-solids separation model of a novel FCC riser terminator device: super short quick separator (SSQS) [J]. Front. Chem. Sci. Eng., 2008, 2(4): 462-467.
[3] LI Jia, ZOU Jijun, ZHANG Xiangwen, GUO Wei, MI Zhentao. Catalytic cracking of endothermic fuels in coated tube reactor[J]. Front. Chem. Sci. Eng., 2008, 2(2): 181-185.
[4] ZHU Yuhong, YU Caixiang, LI Zimu, MI Zhentao, ZHANG Xiangwen. Formation of coke in thermal cracking of jet fuel under supercritical conditions[J]. Front. Chem. Sci. Eng., 2008, 2(1): 17-21.
[5] YAN Pingxiang, MENG Xianghai, GAO Jinsen, XU Chunming, SUI Zhiyu. Study on reformulation of fluid catalytic cracking gasoline and increasing production of light olefins[J]. Front. Chem. Sci. Eng., 2008, 2(1): 74-79.
[6] RUN Mingtao, SONG Hongzan, WANG Yingjin, YAO Chenguang, GAO Jungang. Studies on the rheological, phase morphologic, thermal and mechanical properties of poly(trimethylene terephthalate)/ethylene propylene diene monomer copolymer grafted with maleic anhydride/metallocene polyethylene blends[J]. Front. Chem. Sci. Eng., 2007, 1(3): 238-245.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed