2025-04-15 2020, Volume 6 Issue 1

  • Select all
  • Jie Liu , Qiyuan Peng , Jinqu Chen , Yong Yin

    Under the background of urbanization and the rapid development of urban rail transit (URT), serious attention has been focused on URT network reliability in recent years. In this work, in order to measure network reliability, three indicators are constructed based on passengers’ tolerable travel paths, passenger travel efficiency and passenger travel realization on a URT network. The passenger tolerability coefficient, which is the ratio of passengers’ tolerable travel time to the shortest possible travel time, is proposed and added to the indicators. It reflects passengers’ behavior with respect to choice of travel paths. The ratio of affected passenger volume (RAPV) is proposed to identify important stations. Finally, the connectivity reliability of Wuhan’s subway network is analyzed by simulating attacks on stations. The results show that the degree centrality, betweenness centrality and RAPV indicators of stations can effectively identify the important stations that have a significant impact on the connectivity reliability of the network. In particular, the RAPV indicator effectively identifies stations that have the greatest influence on passenger travel realization. The connectivity reliability of Wuhan’s subway network is sensitive to passenger tolerability coefficient, and reliability is greater during non-peak hours than during peak hours. In addition, the stations that are important to the connectivity reliability of the Wuhan subway have two features, i.e., they are located at the center of the city, and they are important for connecting subgraphs of the network.

  • Sebastian Gintschel , Phumin Kirawanich

    Design practices in regard to passenger hazard exposure in mass transit stations that are directly open to the atmosphere, so-called open stations, are the focus of this study. The benchmarking exercise intends to provide a comprehensive review regarding the application of existing international and national design codes, standards, and guidelines in terms of their ability to mitigate hazards at key points of contact (POC) between passengers and station, such as walking surfaces, stairs, lifts, escalators, and wayfinding, during normal and emergency conditions. By adopting the safety-related risk assessment model, the benchmarking exercise uses national Thai station design practices as a baseline in order to identify applicable national codes, standards, and guidelines, and to conduct a parallel comparative analysis with respect to their international counterparts in order to identify, rank, and evaluate the potential impacts of missing regulations and practices. The analysis shows that a number of station environment-related risks appear along the different paths of egress and at different POC that must be addressed. With the application of Thai national codes, standards, and guidelines alone, the designer is still susceptible to design decisions that do not reduce risk levels. It was also found that more than half of the risks in paths of egress remain undesirable or intolerable after the design, and thus pose a threat of injury to passengers and create growing concerns for operators. Based on the findings of the study, a recommendation can be made for the use of a design handbook for stations by ranking different existing standards in accordance with their importance to the design endeavor, with legal support from involved parties.

  • Praful Potti , Marin Marinov

    The performance of the West Midlands Metro in the United Kingdom is analyzed in the present study by evaluating the existing timetables of the metro system. Using SIMUL8 computer software, a discrete event-based simulation prototype modeling the metro system is developed and implemented. The model adequately describes the performance of the West Midlands Metro system. By running simulations, the overall utilization level of the metro system is calculated. The results of the simulation model indicate that the metro system is being underutilized. The low utilization rates indicate a potential for the introduction of new services capable of exploiting the existing infrastructure and improving the utilization levels of the existing metro system; For example, the potential of using the current metro system for urban freight transport could be a new service of interest and provide scope for further research.

  • Waressara Weerawat , Lalitphan Samitiwantikul , Ratthanan Torpanya

    The airport rail link (ARL) was launched in 2010 as a premium rail transit service between the inner city of Bangkok and the airport. In 2014, the express service was canceled due to its unpopularity and transformed into the commuter service. In 2017, the new extended service concept was introduced under the three airport links project. Under this new concept, both ARL and high-speed trains will run on the city line section between Don Mueang and Suvarnabhumi Airports. This paper focuses on the use of a microsimulation model to identify the challenge of mixed-service operations, with regular and express trains running on the city line section. The simulation model allows investigation of hypothetical situations and construction of feasible timetables. The model can identify sections where special attention is needed, such as speed reductions, extended dwell times, or delayed departures. During the peak hour, the results suggest that the regular ARL should run with a 10-min headway and the high-speed one line with a 20-min headway, as an alternative solution. This results in fewer train numbers and less additional running time. Simulations indicate that the high-speed train is not efficient, as it consumes 2–3 times higher energy, while offering little time saving compared with the ARL city train. In addition, the Suvarnabhumi Airport extension track layout needs to be carefully considered, since the Suvarnabhumi Station area is a bottleneck liable to disruption.

  • Khin Thiri Kyaw Nyunt , Natachai Wongchavalidkul

    The purpose of this work is to support the transit-oriented development (TOD) in Thailand. The main research objective is to explore the relationship between ridership demand and TOD indicators, which is expected to be the first question that a developer in Thailand must be able to answer in order to direct their development plan in the right direction. Using existing Bangkok metro stations as a case study, 22 variables categorized into three groups (density, diversity, and design) were collected for an 800-m buffer area around the stations. Results of the correlation analysis between transit ridership and other variables show a significant relation with the volume of transit ridership. Bus services have a stronger influence on transit ridership than railway stations and ferries (pier). Also, the interchange stations and park-and-ride buildings are found to be the main variables that correlate directly with the transit ridership numbers. Results from the principal component analysis are used to evaluate factors of TOD characteristics for the existing Bangkok metro stations, categorized into seven factor groups.

  • Han-Mei Chen , Rongxin Zhou , Cristian Ulianov

    The transition from a linear economy to a circular economy is a significant component of economic, environmental and social sustainability. Underground metro infrastructures such as tunnels can play a vital role in a circular economy, resulting in greater sustainability and less contribution to climate change. This paper presents numerical models of small-scale brick-lined railway tunnels to identify the critical locations, and then proposes corresponding circular approaches and solutions for the design, maintenance, life extension and end-of-service-life (EoSL) stages of underground infrastructures. The proposed numerical model is firstly verified with respect to the relevant experimental model based on tests under various loading conditions. The results demonstrate that detailed failure processes can be realistically captured by the numerical model, while the macroscopic behaviour compares well with experimental observations. Numerical modelling and subsequent prediction stand out as a practical approach and a powerful performance-based tool for analysing the reuse/recycling potential of metro tunnels and then carrying out easy repair and design for adaptability, disassembly and recoverability of underground infrastructures for a circular economy.