Dynamic properties of micro-NPR material and its controlling effect on surrounding rock mass with impact disturbances

Manchao He , Jie Hu , Tai Cheng , Fei Deng , Zhigang Tao , Hongru Li , Di Peng

Underground Space ›› 2024, Vol. 15 ›› Issue (2) : 331 -352.

PDF (9896KB)
Underground Space ›› 2024, Vol. 15 ›› Issue (2) :331 -352. DOI: 10.1016/j.undsp.2023.08.015
Research articl
research-article

Dynamic properties of micro-NPR material and its controlling effect on surrounding rock mass with impact disturbances

Author information +
History +
PDF (9896KB)

Abstract

A novel meta steel with negative Poisson’s ratio effect (termed as micro-NPR steel) is developed for rock support in deep underground engineering. It possesses high strength, high ductility, and high energy absorption characteristics. In this paper, static tension and modified dynamic drop hammer tests are performed on this novel material to investigate its mechanical properties first. Then based on this material, a new generation of micro-NPR anchor cable is developed and applied in field tests subjected to blasting dynamic loads. The results of laboratory tests reveal that the ultimate elongation of micro-NPR steel under dynamic impacts is more than 30% and it is over 1.5 times that of Q235; the plastic and total energy absorption of micro-NPR are both significantly higher than that of Q235. Field test indicates the fine controlling effect of micro-NPR anchor cable on surrounding rock mass under dynamic loads. Axial force confirms that micro-NPR cables can distribute and absorb the dynamic energy uniformly around the supported rock when subjected to dynamic disturbance, avoiding local failure induced by excessive stress concentration. The excavation compensation principle and energy-absorbing characteristics are used to explain the support mechanisms. Thus, micro-NPR material and anchor cable can control and prevent dynamic disasters in deep underground engineering effectively.

Keywords

Micro-NPR steel / Energy-absorbing / Drop hammer test / Anchor cable / Field test

Cite this article

Download citation ▾
Manchao He, Jie Hu, Tai Cheng, Fei Deng, Zhigang Tao, Hongru Li, Di Peng. Dynamic properties of micro-NPR material and its controlling effect on surrounding rock mass with impact disturbances. Underground Space, 2024, 15(2): 331-352 DOI:10.1016/j.undsp.2023.08.015

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research is supported by the National Natural Science Foundation of China (Grant No. 41941018), the Foundation of State Key Laboratory for Geomechanics and Deep Underground Engineering (Grant No. SKLGDUEK 2217), and the Collaborative Innovation Center for Prevention and Control of Mountain Geological Hazards of Zhejiang Province (Grant No. PCMGH-2022-03).

References

[1]

Alderson, A. (1999). A triumph of lateral thought. Chemistry & Industry, 10, 384-391.

[2]

Askaripour, M., Saeidi, A., Rouleau, A., & Mercier-Langevin, P. (2022). Rockburst in underground excavations: A review of mechanism, classification, and prediction methods. Underground Space, 7(4), 577-607.

[3]

AQSIQ & SAC. (2014). GB6722—2014. Standards of the People’s Republic of China. Safety regulations for blasting. China Standard Press, Beijing (in Chinese).

[4]

Bouaziz, O., Allain, S., Scott, C. P., Cugy, P., & Barbier, D. (2011). High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Current Opinion in Solid State & Materials Science, 15(4), 141-168.

[5]

Cheng, T., He, M. C., Li, H. R., Liu, D. Q., Qiao, Y. F., & Hu, J. (2023). Experimental investigation on the influence of a single structural plane on rockburst. Tunnelling and Underground Space Technology, 132, 104914.

[6]

Choi, J. B., & Lakes, R. S. (1992). Non-linear properties of metallic cellular materials with a negative Poisson’s ratio. Journal of Materials Science, 27(19), 5375-5381.

[7]

Choi, J. B., & Lakes, R. S. (1996). Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: Experiment and analysis. International Journal of Fracture, 80(1), 73-83.

[8]

Chu, Z. F., Wu, Z. J., Liu, Q. S., Liu, B. G., & Sun, J. L. (2021). Analytical solution for lined circular tunnels in deep viscoelastic burgers rock considering the longitudinal discontinuous excavation and sequential installation of liners. Journal of Engineering Mechanics, 147(4), 04021009.

[9]

Das, R., & Singh, T. N. (2021). Effect of rock bolt support mechanism on tunnel deformation in jointed rockmass: A numerical approach. Underground Space, 6(4), 409-420.

[10]

De Cooman, B. C., Estrin, Y., & Kim, S. K. (2018). Twinning-induced plasticity (TWIP) steels. Acta Materialia, 142, 283-362.

[11]

Fan, Y., Cui, X. Z., Leng, Z. D., Zhou, Y. R., Zheng, J. W., & Wang, F. (2020). Development of a model to predict vibrations induced by blasting excavation of deep rock masses under high in situ stress. Shock and Vibration, 2020, 8817631.

[12]

Frommeyer, G., Brü x, U., & Neumann, P. (2003). Supra-ductile and highstrength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ International, 43(3), 438-446.

[13]

Fu, Y. K., Wu, Y. Z., Ju, W. J., & He, J. (2016). Response and impact mechanism of rock bolt under lateral dynamic impact load. Journal of China Coal Society, 41(7), 1651-1658 (in Chinese).

[14]

General Administration of Quality Supervision, Inspection and Quarantine of the People‘s Republic of China (AQSIQ) & Standardization Administration of China (SAC) (2010). GB/T 228.1—2010. Metallic materials-Tensile testing-Part 1: Method of test at room temperature (in Chinese).

[15]

Gu, J. B., Wang, J. Y., & Lu, W. (2022). An experimental assessment of ultra high performance concrete beam reinforced with negative Poisson’s ratio (NPR) steel rebar. Construction and Building Materials, 327, 127042.

[16]

Gu, T. Y., Jia, L. J., Chen, B., Xia, M., Guo, H. Y., & He, M. C. (2021). Unified full-range plasticity till fracture of meta steel and structural steels. Engineering Fracture Mechanics, 253, 107869.

[17]

He, M. C., & Wang, Q. (2022). Excavation compensation method and key technology for surrounding rock control. Engineering Geology, 307, 106784.

[18]

He, M. C., Gong, W. L., Wang, J., Qi, P., Tao, Z. G., Du, S., & Peng, Y. Y. (2014). Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance. International Journal of Rock Mechanics and Mining Sciences, 67, 29-42.

[19]

He, M. C., Tao, Z. G., & Gong, W. L. (2017). Geo-disaster prediction with double-block mechanics based on Newton force measurement. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 3(2), 107-119.

[20]

He, M.C., Guo, H.Y., & Xia, M. (2018). NPR anchor steel material and its production method. Beijing: CN108754339A (in Chinese).

[21]

He, M. C., Ren, S. L., Guo, L. J., Lin, W. J., Zhang, T. W., & Tao, Z. G. (2022a). Experimental study on influence of host rock strength on shear performance ofMicro-NPR steel bolted rock joints. International Journal of Rock Mechanics and Mining Sciences, 159, 105236.

[22]

He, M. C., Sui, Q. R., Li, M. N., Wang, Z. J., & Tao, Z. G. (2022b). Compensation excavation method control for large deformation disaster of mountain soft rock tunnel. International Journal of Mining Science and Technology, 32(5), 951-963.

[23]

He, M. C., Cheng, T., Qiao, Y. F., & Li, H. R. (2023a). A review of rockburst: Experiments, theories, and simulations. Journal of Rock Mechanics and Geotechnical Engineering, 15(5), 1312-1353.

[24]

He, M. C., Guo, A. P., Meng, Z. G., Pan, Y. F., & Tao, Z. G. (2023b). Impact and explosion resistance of NPR anchor cable: Field test and numerical simulation. Underground Space, 10, 76-90.

[25]

He, M. C., Ren, S. L., Xu, H. T., Luo, S. L., Tao, Z. G., & Zhu, C. (2023c). Experimental study on the shear performance of quasi-NPR steel bolted rock joints. Journal of Rock Mechanics and Geotechnical Engineering, 15(2), 350-362.

[26]

Hoek, E., Kaiser, P. K., & Bawden, W. F. (1995). Support of underground excavation in hard rock. Rotterdam: Balkema.

[27]

Hu, J., Li, Z. H., Darve, F., & Feng, J. L. (2020). Advantages of secondorder work as a rational safety factor and stability analysis of a reinforced rock slope. Canadian Geotechnical Journal, 57(5), 661-672.

[28]

Jager, A., J. (1992). Two new support units for the control of rockburst damage. In P. K. Kaiser, & D. R. McCreath (Eds.), Rock support in mining and underground construction (pp.621-631). Rotterdam: Balkema.

[29]

Jia, L. J., Zhang, R., Zhou, C. F., Gu, T. Y., Liu, T., Xie, J. B., He, M. C., Xia, M., & Chen, B. (2023). In-situ three-dimensional X-ray investigation on micro ductile fracture mechanism of a high-Mn steel with delayed necking effect. Journal of Materials Research and Technology, 24, 1076-1087.

[30]

Jiang, Q., Feng, X. T., Cui, J., & Li, S. J. (2015). Failure mechanism of unbonded prestressed Thru-anchor cables. In Situ investigation in large underground caverns. Rock Mechanics and Rock Engineering, 48 (2), 873-878.

[31]

Jiang, Y. J., Zhang, S. H., Luan, H. J., Wang, C. S., Wang, G., & Han, W. (2022). Numerical modelling of the performance of bolted rough joint subjected to shear load. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 8(5), 140.

[32]

Kaiser, P. K., & Cai, M. (2012). Design of rock support system under rockburst condition. Journal of Rock Mechanics and Geotechnical Engineering, 4(3), 215-227.

[33]

Kang, H. P., Lin, J. A., & Wu, Y. Z. (2009). Development of high pretensioned and intensive supporting system and its application in coal mine roadways. Procedia Earth and Planetary Science, 1(1), 479-485.

[34]

Kang, H. P., Wu, Y. Z., He, J., & Fu, Y. K. (2015). Rock bolting performance and field practice in deep roadway with rock burst. Journal of China Coal Society, 40(10), 2225-2233 (in Chinese).

[35]

Kolken, H. M. A., & Zadpoor, A. A. (2017). Auxetic mechanical metamaterials. RSC Advances, 7(9), 5111-5129.

[36]

Lakes, R. (1987). Foam structures with a negative Poisson’s ratio. Science, 235(4792), 1038-1040.

[37]

Li, C. C. (2010). A new energy-absorbing bolt for rock support in high stress rock masses. International Journal of Rock Mechanics and Mining Sciences, 47(3), 396-404.

[38]

Li, C. C., Gisle, S., & Arne, M. (2014). A review on the performance of conventional and energy-absorbing rockbolts. Journal of Rock Mechanics and Geotechnical Engineering, 6(4), 315-327.

[39]

Li, Z. M., Pradeep, K. G., Deng, Y., Raabe, D., & Tasan, C. C. (2016). Metastable high-entropy dual-phase alloys overcome the strengthductility trade-off. Nature, 534(7606), 277.

[40]

Li, X. B., Gong, F. Q., Tao, M., Dong, L. J., Du, K., Ma, C. D., Zhou, Z. L., & Yin, T. B. (2017a). Failure mechanism and coupled staticdynamic loading theory in deep hard rock mining: A review. Journal of Rock Mechanics and Geotechnical Engineering, 9(4), 767-782.

[41]

Li, X. L., Hu, H., He, L. H., & Li, K. G. (2017b). An analytical study of blasting vibration using deep mining and drivage rules. Cluster Computing, 20(1), 109-120.

[42]

Li, H. R., Qiao, Y. F., Shen, R. X., He, M. C., Cheng, T., Xiao, Y. M., & Tang, J. (2021). Effect of water on mechanical behavior and acoustic emission response of sandstone during loading process: Phenomenon and mechanism. Engineering Geology, 294, 106386.

[43]

Li, H. R., Qiao, Y. F., Shen, R. X., & He, M. C. (2022). Electromagnetic radiation signal monitoring and multi-fractal analysis during uniaxial compression of water-bearing sandstone. Measurement, 196, 111245.

[44]

Lim, T. C., Alderson, A., & Alderson, K. L. (2014). Experimental studies on the impact properties of auxetic materials. Physica Status Solidi (B): Basic Research, 251(2), 307-313.

[45]

Luo, S., Gong, F. Q., Peng, K., & Liu, Z. X. (2023). Influence of water on rockburst proneness of sandstone: Insights from relative and absolute energy storage. Engineering Geology, 323, 107172.

[46]

Mazaira, A., & Konicek, P. (2015). Intense rockburst impacts in deep underground construction and their prevention. Canadian Geotechnical Journal, 52(10), 1426-1439.

[47]

Mirzaghorbanali, A., Rasekh, H., Aziz, N., Yang, G., Khaleghparast, S., & Nemcik, J. (2017). Shear strength properties of cable bolts using a new double shear instrument, experimental study, and numerical simulation. Tunnelling and Underground Space Technology, 70, 240-253.

[48]

Ming, W., Yang, X. J., Pan, Y. F., Mao, Y. D., Wang, X., He, M. C., & Tao, Z. G. (2023). Field test and numerical simulation of initial support effect of negative Poisson’s ratio anchor cable under strong impact and vibration. Tunnelling and Underground Space Technology, 133, 104955.

[49]

Ortlepp, W., D. (1992). The design of support for the containment of rockburst damage in tunnels—an engineering approach. In P. K. Kaiser, & D. R. McCreath (Eds.), Rock support in mining and underground construction (pp. 593-609). Rotterdam: Balkema.

[50]

Ortlepp, W. D., & Stacey, T. R. (1994). Rockburst mechanisms in tunnels and shafts. Tunnelling and Underground Space Technology, 9(1), 59-65.

[51]

Ortlepp, W.D., Human, L., Erasmus, P.N., & Dawe, S. (2005). Static and dynamic load displacement properties of a yielding cable anchordetermined in a novel testing device. In 6th International Symposium on Rockburst and Seismicity in Mines (pp.529-534).

[52]

Perth, Australia. Rabcewicz, L. V. (1964). The new Austrian tunnelling method. Water Power, 17, 453-457.

[53]

Sakhno, O. U., & Zhou, P. Y. (1987). A new type of let-down anchor. China Energy and Environmental Protection, 1987(5), 42-43 (in Chinese).

[54]

Soleimani, M., Kalhor, A., & Mirzadeh, H. (2020). Transformationinduced plasticity (TRIP) in advanced steels: A review. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 795, 140023.

[55]

St-Pierre, L., Hassani, F. P., Radziszewski, P. H., & Ouellet, J. (2009). Development of a dynamic model for a cone bolt. International Journal of Rock Mechanics and Mining Sciences, 46(1), 107-114.

[56]

Su, G. S., Feng, X. T., Wang, J. H., Jiang, J. Q., & Hu, L. H. (2017). Experimental study of remotely triggered rockburst induced by a tunnel axial dynamic disturbance under true-triaxial conditions. Rock Mechanics and Rock Engineering, 50(8), 2207-2226.

[57]

Sui, Q. R., He, M. C., He, P. F., Xia, M., & Tao, Z. G. (2022). State of the art review of the large deformation rock bolts. Underground Space, 7(3), 465-482.

[58]

Sui, Q. R., He, M. C., Shi, T. T., Pang, S. H., Xiang, J. Y., Tao, Z. G., & Qu, D. J. (2023). Lateral damage mechanism of the double-track tunnel in the mountainous layered soft rock and NPR anchor cable control. Underground Space, 12, 31-43.

[59]

Sun, X. M., Zhang, B., Yang, K., Guo, P. F., & Tao, Z. G. (2022). Large deformation mechanism of foliated rock and NPR anchor cable support technology in the Changning tunnel: A Case Study. Rock Mechanics and Rock Engineering, 55, 7243-7268.

[60]

Tahmasebinia, F., Zhang, C. G., Wei, C. C., Canbulat, I., Saydam, S., & Sepasgozar, S. (2021). A new concept to design combined support under dynamic loading using numerical modelling. Tunnelling and Underground Space Technology, 117, 104132.

[61]

Tahmasebinia, F., Yang, A. D., Feghali, P., & Skrzypkowski, K. A. (2023a). A numerical investigation to calculate ultimate limit state capacity of cable bolts subjected to impact loading. Applied Sciences, 13(1), 15.

[62]

Tahmasebinia, F., Yang, A. D., Feghali, P., & Skrzypkowski, K. (2023b). Structural evaluation of cable bolts under static loading. Applied Sciences, 13(3), 1326.

[63]

Tang, J., He, M. C., Qiao, Y. F., Xia, M., & Tao, Z. G. (2021). Tensile behavior of a novel high-strength and high-toughness steel at strain rates from 0.1 s(-1) to 1000 s(-1). Construction and Building Materials, 304, 124606.

[64]

Tao, M., Zhao, H. T., Li, X. B., Li, X., & Du, K. (2018). Failure characteristics and stress distribution of pre-stressed rock specimen with circular cavity subjected to dynamic loading. Tunnelling and Underground Space Technology, 81, 1-15.

[65]

Tao, Z. G., Luo, S. L., Qiao, Y. F., & He, M. C. (2021a). Key factors analysis and constitutive equation modification of a macro-NPR bolt for achieving high constant resistance and large deformation characteristics. International Journal of Rock Mechanics and Mining Sciences, 147, 104911.

[66]

Tao, Z. G., Zhu, C., He, M. C., & Karakus, M. (2021b). A physical modeling-based study on the control mechanisms of Negative Poisson’s ratio anchor cable on the stratified toppling deformation of antiinclined slopes. International Journal of Rock Mechanics and Mining Sciences, 138, 104632.

[67]

Van Slycken, J., Verleysen, P., Degrieck, J., Samek, L., & De Cooman, B. C. (2006). High-strain-rate behavior of low-alloy multiphase aluminum- and silicon-based transformation-induced plasticity steels. Metallurgical and Materials Transactions A, 37A(5), 1527-1539.

[68]

Varden, R., Lachenicht, R., Player, J., Thompson, A., & Villaescusa, E. (2008). Development and implementation of the Garford dynamic bolt at the Kanowna Belle Mine. In 10th underground operators’ conference (pp. 14-16). Launceston, Australia.

[69]

Wang, A. W., Gao, Q. S., Dai, L. P., Pan, Y. S., Zhang, J. Z., & Chen, J. Q. (2018). Static and dynamic performance of rebar bolts and its adaptability under impact loading. Journal of China Coal Society, 43 (11), 2999-3006 (in Chinese).

[70]

Wang, B., He, M. C., & Qiao, Y. F. (2021). Resistance behavior of Constant-Resistance-Large-Deformation bolt considering surrounding rock pressure. International Journal of Rock Mechanics and Mining Sciences, 137, 104511.

[71]

Wang, C. S., Jiang, Y. J., Wang, G., Luan, H. J., Zhang, Y. C., & Zhang, S. H. (2022a). Experimental investigation on the shear behavior of the bolt-grout interface under CNL and CNS conditions considering realistic bolt profiles. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 8(4), 111.

[72]

Wang, Q., Xu, S., Xin, Z. X., He, M. C., Wei, H. Y., & Jiang, B. (2022b). Mechanical properties and field application of constant resistance energy-absorbing anchor cable. Tunnelling and Underground Space Technology, 125, 104526.

[73]

Windsor, C. R. (1997). Rock reinforcement systems. International Journal of Rock Mechanics and Mining Sciences, 34(6), 919-951.

[74]

Xiao, Y. M., Qiao, Y. F., He, M. C., Li, H. R., Cheng, T., & Tang, J. (2022). A unified strain-hardening and strain-softening elastoplastic constitutive model for intact rocks. Computers and Geotechnics, 148, 104772.

[75]

Xiao, Y. M., He, M. C., Qiao, Y. F., Peng, M. L., Li, H. R., & Cheng, T. (2023). A novel semi-analytical solution to ground reactions of deeply buried tunnels considering the nonlinear behavior of rocks. Computers and Geotechnics, 159, 105429.

[76]

Yang, R. S., Li, Y. L., Wang, M. S., Zhu, Y., Cheng, Y. X., Xiao, C. L., & Zhao, Y. (2018). Experimental study of shear mechanical properties of prestressed cable bolts. Journal of China University of Mining and Technology, 47(6), 1166-1174 (in Chinese).

[77]

Yang, X. J., Ming, W., Zhang, W. R., Zhu, C., Mao, Y. D., Wang, X., He, M. C., & Tao, Z. G. (2022). Support on deformation failure of layered soft rock tunnel under asymmetric stress. Rock Mechanics and Rock Engineering, 55(12), 7587-7609.

[78]

Yang, X. J., Ming, W., Gong, W. J., Pan, Y. F., He, M. C., & Tao, Z. G. (2023). Support characteristics of flexible negative Poisson’s ratio anchor cable response to blasting impacts. Underground Space, 8, 162-180.

[79]

Yi, X., & Kaiser, P. K. (1994). Impact testing for rockbolt design in rockburst conditions. International Journal of Rock Mechanics and Mining Sciences, 31(6), 671-685.

[80]

Yu, W. X., Liu, B. X., Cui, X. P., Dong, Y. C., Zhang, X., & He, J. N. (2018). Revealing extraordinary strength and toughness of multilayer TWIP/Maraging steels. Materials Science and Engineering: A, 727, 70-77.

[81]

Zhang, Z. J., Sheng, H. W., Wang, Z. J., Gludovatz, B., Zhang, Z., George, E. P., Yu, Q., Mao, S. X., & Ritchie, R. O. (2017). Dislocation mechanisms and 3D twin architectures generate exceptional strengthductility- toughness combination in CrCoNi medium-entropy alloy. Nature Communications, 8, 14390.

[82]

Zhang, P. L., Gong, F. Q., Luo, S., Si, X. F., & Xu, L. (2023). Damage constitutive model of uniaxially compressed coal material considering energy dissipation. Journal of Materials Research and Technology, 27, 920-931.

[83]

Zhao, X. D., Zhang, S. J., Zhu, Q. K., Li, H. B., Chen, G. J., & Zhang, P. Q. (2020). Dynamic and static analysis of a kind of novel J energyreleasing bolts. Geomatics, Natural Hazards and Risk, 11(1), 2486-2508.

[84]

Zhu, C., He, M. C., Karakus, M., Zhang, X. H., & Tao, Z. G. (2021). Numerical simulations of the failure process of anaclinal slope physical model and control mechanism of negative Poisson’s ratio cable. Bulletin of Engineering Geology and the Environment, 80(4), 3365-3380.

PDF (9896KB)

42

Accesses

0

Citation

Detail

Sections
Recommended

/