Multi-source data integration and multi-scale modeling framework for progressive prediction of complex geological interfaces in tunneling

Jingxiao Wang , Peinan Li , Xiaoying Zhuang , Xiaojun Li , Xi Jiang , Jun Wu

Underground Space ›› 2024, Vol. 15 ›› Issue (2) : 1 -25.

PDF (9733KB)
Underground Space ›› 2024, Vol. 15 ›› Issue (2) :1 -25. DOI: 10.1016/j.undsp.2023.08.006
Research articl
research-article

Multi-source data integration and multi-scale modeling framework for progressive prediction of complex geological interfaces in tunneling

Author information +
History +
PDF (9733KB)

Abstract

A reliable geological model plays a fundamental role in the efficiency and safety of mountain tunnel construction. However, regional models based on limited survey data represent macroscopic geological environments but not detailed internal geological characteristics, especially at tunnel portals with complex geological conditions. This paper presents a comprehensive methodological framework for refined modeling of the tunnel surrounding rock and subsequent mechanics analysis, with a particular focus on natural space distortion of hard-soft rock interfaces at tunnel portals. The progressive prediction of geological structures is developed considering multi-source data derived from the tunnel survey and excavation stages. To improve the accuracy of the models, a novel modeling method is proposed to integrate multi-source and multi-scale data based on data extraction and potential field interpolation. Finally, a regional-scale model and an engineering-scale model are built, providing a clear insight into geological phenomena and supporting numerical calculation. In addition, the proposed framework is applied to a case study, the Long-tou mountain tunnel project in Guangzhou, China, where the dominant rock type is granite. The results show that the data integration and modeling methods effectively improve model structure refinement. The improved model's calculation deviation is reduced by about 10% to 20% in the mechanical analysis. This study contributes to revealing the complex geological environment with singular interfaces and promoting the safety and performance of mountain tunneling.

Keywords

Mountain tunnel / Geological modeling / Multi-source data / Progressive prediction / Tunnel portals

Cite this article

Download citation ▾
Jingxiao Wang, Peinan Li, Xiaoying Zhuang, Xiaojun Li, Xi Jiang, Jun Wu. Multi-source data integration and multi-scale modeling framework for progressive prediction of complex geological interfaces in tunneling. Underground Space, 2024, 15(2): 1-25 DOI:10.1016/j.undsp.2023.08.006

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Jingxiao Wang: Conceptualization, Methodology, Data curation, Formal analysis, Visualization, Validation, Writing - original draft. Peinan Li: Conceptualization, Methodology, Investigation, Data curation, Formal analysis, Funding acquisition. Xiaoying Zhuang: Visualization, Writing - review & editing. Xiaojun Li: Writing - review & editing. Xi Jiang: Writing - review & editing. Jun Wu: Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

This work was supported by the National Natural Science Foundation of China, China (Grant No. 41827807), the “Social Development Project of Science and Technology Commission of Shanghai Municipality, China (Grant No. 21DZ1201105)”, “The Fundamental Research Funds for the Central Universities, China (Grant No. 21D111320)”, and the “Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, China (Grant No. 2022ZDK018)”.

References

[1]

Aldiss, D. T., Black, M. G., Entwisle, D. C., Page, D. P., & Terrington, R. L. (2012). Benefits of a 3D geological model for major tunnelling works: An example from Farringdon, east-central London, UK. Quarterly Journal of Engineering Geology and Hydrogeology, 45(4), 405-414.

[2]

Aug, C. (2004). 3D geological modelling and uncertainty:The potentialfield method. Doctoral thesis, E.N.S. des Mines de Paris, 198 pp. (in French)

[3]

Battulwar, R., Zare-Naghadehi, M., Emami, E., & Sattarvand, J. (2021). A state-of-the-art review of automated extraction of rock mass discontinuity characteristics using three-dimensional surface models. Journal of Rock Mechanics and Geotechnical Engineering, 13(4), 920-936.

[4]

Borghi, A., Renard, P., Fournier, L., & Negro, F. (2015). Stochastic fracture generation accounting for the stratification orientation in a folded environment based on an implicit geological model. Engineering Geology, 187, 135-142.

[5]

Calcagno, P., Chiles, J. P., Courrioux, G., & Guillen, A. (2008). Geological modelling from field data and geological knowledge Part I. Modelling method coupling 3D potential-field interpolation and geological rules. Physics of the Earth and Planetary Interiors, 171(1-4), 147-157.

[6]

Caumon, G. (2010). Towards Stochastic Time-Varying Geological Modeling. Mathematical Geosciences, 42(5), 555-569.

[7]

Caumon, G., Gray, G., Antoine, C., & Titeux, M.-O. (2013). Three- Dimensional implicit stratigraphic model building from remote sensing data on tetrahedral meshes: Theory and application to a regional model of La Popa Basin, NE Mexico. IEEE Transactions on Geoscience and Remote Sensing, 51(3), 1613-1621.

[8]

Chamrar, A., Oujidi, M., El Mandour, A., & Jilali, A. (2019). 3D geological modeling of Gareb-Bouareg basin in northeast Morocco. Journal of African Earth Sciences, 154, 172-180.

[9]

Chen, G. X., Zhu, J., Qiang, M. Y., & Gong, W. P. (2018a). Threedimensional site characterization with borehole data - A case study of Suzhou area. Engineering Geology, 234, 65-82.

[10]

Chen, J. Q., Li, X. J., Zhu, H. H., & Rubin, Y. (2017). Geostatistical method for inferring RMR ahead of tunnel face excavation using dynamically exposed geological information. Engineering Geology, 228, 214-223.

[11]

Chen, J. Q., Zhu, H. H., & Li, X. J. (2016). Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud. Computers & Geosciences, 95, 18-31.

[12]

Chen, Q. Y., Mariethoz, G., Liu, G., Comunian, A., & Ma, X. G. (2018b). Locality-based 3-D multiple-point statistics reconstruction using 2-D geological cross sections. Hydrology and Earth System Sciences, 22(12), 6547-6566.

[13]

Chiles, J. P., Aug, C., Guillen, A., & Lees, T. (2004). Modelling the geometry of geological units and its uncertainty in 3D from structural data - The potential-field method. In Australasian Institute of Mining and Metallurgy Spectrum Series [Orebody Modelling and Strategic Mine Planning: Uncertainty and Risk Management Models]. International Symposium on Orebody Modelling and Strategic Mine Planning, Perth, Australia.

[14]

DeWolfe, Y. M., Gibson, H. L., & Richardson, D. (2018). 3D reconstruction of volcanic and ore-forming environments of a giant VMS system: A case study from the Kidd Creek Mine, Canada. Ore Geology Reviews, 101, 532-555.

[15]

Eshaghi, E., Reading, A. M., Roach, M., Duffett, M., Bombardieri, D., Cracknell, M. J., & Everard, J. L. (2020). Efficient regional scale 3D potential field geophysical modelling to redefine the geometry of granite bodies beneath prospective, geologically complex, northwest Tasmania. Ore Geology Reviews, 127, 103799.

[16]

Ferrer, R., Emery, X., Maleki, M., & Navarro, F. (2021). Modeling the uncertainty in the layout of geological units by implicit boundary simulation accounting for a preexisting interpretive geological model. Natural Resources Research, 30(6), 4123-4145.

[17]

Flinchum, B. A., Holbrook, W. S., Rempe, D., Moon, S., Riebe, C. S., Carr, B. J., Hayes, J. L., & Peters, M. P. (2018). Critical zone structure under a granite ridge inferred from drilling and three-dimensional seismic refraction data. Journal of Geophysical Research-Earth Surface, 123(6), 1317-1343.

[18]

Goncalves, I. G., Kumaira, S., & Guadagnin, F. (2017). A machine learning approach to the potential-field method for implicit modeling of geological structures. Computers & Geosciences, 103, 173-182.

[19]

Guo, J. T., Wang, J. M., Wu, L. X., Liu, C. Z., Li, C. L., Li, F. D., Lin, M., Jessell, M. W., Li, P. Y., Dai, X. W., & Tang, J. R. (2020). Explicit-implicit-integrated 3-D geological modelling approach: A case study of the Xianyan Demolition Volcano (Fujian, China). Tectonophysics, 795, 228648.

[20]

Guo, J. T., Wang, X. L., Wang, J. M., Dai, X. W., Wu, L. X., Li, C. L., Liu, S. J., & Jessell, M. W. (2021). Three-dimensional geological modeling and spatial analysis from geotechnical borehole data using an implicit surface and marching tetrahedra algorithm. Engineering Geology, 284, 106047.

[21]

Guo, J. T., Wu, L. X., Zhang, M. M., Liu, S. J., & Sun, X. Y. (2018). Towards automatic discontinuity trace extraction from rock mass point cloud without triangulation. International Journal of Rock Mechanics and Mining Sciences, 112, 226-237.

[22]

Hodgetts, D. (2013). Laser scanning and digital outcrop geology in the petroleum industry: A review. Marine and Petroleum Geology, 46, 335-354.

[23]

Jorgensen, F., Hoyer, A.-S., Sandersen, P. B. E., He, X., & Foged, N. (2015). Combining 3D geological modelling techniques to address variations in geology, data type and density - An example from Southern Denmark. Computers & Geosciences, 81, 53-63.

[24]

Kaufmann, O., & Martin, T. (2008). 3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines. Computers & Geosciences, 34(3), 278-290.

[25]

Lajaunie, C., Courrioux, G., & Manuel, L. (1997). Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation. Mathematical Geology, 29(4), 571-584.

[26]

Li, S. C., Liu, B., Xu, X. J., Nie, L. C., Liu, Z. Y., Song, J., Sun, H. F., Chen, L., & Fan, K. R. (2017). An overview of ahead geological prospecting in tunneling. Tunnelling and Underground Space Technology, 63, 69-94.

[27]

Li, X. J., Chen, J. Q., & Zhu, H. H. (2016). A new method for automated discontinuity trace mapping on rock mass 3D surface model. Computers & Geosciences, 89, 118-131.

[28]

Li, X. J., Chen, Z. Y., Chen, J. Q., & Zhu, H. H. (2019). Automatic characterization of rock mass discontinuities using 3D point clouds. Engineering Geology, 259, 105131.

[29]

Li, X. J., Li, P. N., & Zhu, H. H. (2013). Coal seam surface modeling and updating with multi-source data integration using Bayesian Geostatistics. Engineering Geology, 164, 208-221.

[30]

Li, X. H., Yuan, F., Zhang, M. M., Jowitt, S. M., Ord, A., Zhou, T. F., & Dai, W. Q. (2019). 3D computational simulation-based mineral prospectivity modeling for exploration for concealed Fe-Cu skarntype mineralization within the Yueshan orefield, Anqing district, Anhui Province, China. Ore Geology Reviews, 105, 1-17.

[31]

Lindsay, M. D., Ailleres, L., Jessell, M. W., de Kemp, E. A., & Betts, P. G. (2012). Locating and quantifying geological uncertainty in threedimensional models: Analysis of the Gippsland Basin, southeastern Australia. Tectonophysics, 546, 10-27.

[32]

Lyu, M. M., Ren, B. Y., Wu, B. P., Tong, D. W., Ge, S. C., & Han, S. Y. (2021). A parametric 3D geological modeling method considering stratigraphic interface topology optimization and coding expert knowledge. Engineering Geology, 293, 106300.

[33]

Ming, J., Pan, M., Qu, H. G., & Ge, Z. H. (2010). GSIS: A 3D geological multi-body modeling system from netty cross-sections with topology. Computers & Geosciences, 36(6), 756-767.

[34]

Olierook, H. K. H., Scalzo, R., Kohn, D., Chandra, R., Farahbakhsh, E., Clark, C., Reddy, S. M., & Mueller, R. D. (2021). Bayesian geological and geophysical data fusion for the construction and uncertainty quantification of 3D geological models. Geoscience Frontiers, 12(1), 479-493.

[35]

Pan, D. D., Xu, Z. H., Lu, X. M., Zhou, L. Q., & Li, H. Y. (2020). 3D scene and geological modeling using integrated multi-source spatial data: Methodology, challenges, and suggestions. Tunnelling and Underground Space Technology, 100, 103393.

[36]

Perello, P. (2011). Estimate of the reliability in geological forecasts for tunnels: Toward a structured approach. Rock Mechanics and Rock Engineering, 44(6), 671-694.

[37]

Qin, Y. Z., & Liu, L. M. (2018). Quantitative 3D association of geological factors and geophysical fields with mineralization and its significance for ore prediction: An example from Anqing Orefield, China. Minerals, 8(7), 300.

[38]

Sousa, R. L., & Einstein, H. H. (2021). Lessons from accidents during tunnel construction. Tunnelling and Underground Space Technology, 113, 103916.

[39]

Thomas, A. T., von Harten, J., Jusri, T., Reiche, S., & Wellmann, F. (2022). An integrated modeling scheme for characterizing 3D hydrogeological heterogeneity of the New Jersey shelf. Marine Geophysical Research, 43(2), 11.

[40]

Thornton, J. M., Mariethoz, G., & Brunner, P. (2018). A 3D geological model of a structurally complex Alpine region as a basis for interdisciplinary research. Scientific Data, 5, 180238.

[41]

Thum, L., & De Paoli, R. (2015). 2D and 3D GIS-based geological and geomechanical survey during tunnel excavation. Engineering Geology, 192, 19-25.

[42]

Vollgger, S. A., Wilson, C. J. L., Micklethwaite, S., Tomkins, A. G., & Cruden, A. R. (2020). Ore shoots in folded and fractured rocks - Insights from 3D modelling of the Fosterville gold deposit (Victoria, Australia). Ore Geology Reviews, 118, 103272.

[43]

Wehr, H., Chevrot, S., Courrioux, G., & Guillen, A. (2018). A threedimensional model of the Pyrenees and their foreland basins from geological and gravimetric data. Tectonophysics, 734, 16-32.

[44]

Wellmann, F., & Caumon, G. (2018). Chapter One - 3D structural geological models: Concepts, methods, and uncertainties. Advances in Geophysics, 59, 1-121.

[45]

Wellmann, J. F., Horowitz, F. G., Schill, E., & Regenauer-Lieb, K. (2010). Towards incorporating uncertainty of structural data in 3D geological inversion. Tectonophysics, 490(3-4), 141-151.

[46]

Wu, Q., Xu, H., Zou, X. K., & Lei, H. Z. (2015). A 3D modeling approach to complex faults with multi-source data. Computers & Geosciences, 77, 126-137.

[47]

Wu, W., Zhang, K. S., & Zhu, H. H. (2020). A fast automatic extraction method for rock mass discontinuity orientation using fast k-means++ and fast silhouette based on 3D point cloud. IOP Conference Series: Earth and Environmental Science, 570, 052075.

[48]

Xiong, Z. M., Guo, J. T., Xia, Y. P., Lu, H., Wang, M. Y., & Shi, S. S. (2018). A 3D Multi-scale geology modeling method for tunnel engineering risk assessment. Tunnelling and Underground Space Technology, 73, 71-81.

[49]

Xu, W. T., Zhang, Y. S., Li, X. Z., Wang, X. Y., Ma, F., Zhao, J. B., & Zhang, Y. (2020). Extraction and statistics of discontinuity orientation and trace length from typical fractured rock mass: A case study of the Xinchang underground research laboratory site, China. Engineering Geology, 269, 105553.

[50]

Yang, L., Achtziger-Zupancic, P., & Caers, J. (2021). 3D modeling of large-scale geological structures by linear combinations of implicit functions: Application to a large banded iron formation. Natural Resources Research, 30(5), 3139-3163.

[51]

Yang, L., Hyde, D., Grujic, O., Scheidt, C., & Caers, J. (2019). Assessing and visualizing uncertainty of 3D geological surfaces using level sets with stochastic motion. Computers & Geosciences, 122, 54-67.

[52]

Yeste, L. M., Palomino, R., Varela, A. N., McDougall, N. D., & Viseras, C. (2021). Integrating outcrop and subsurface data to improve the predictability of geobodies distribution using a 3D training image: A case study of a Triassic Channel - Crevasse-splay complex. Marine and Petroleum Geology, 129, 105081.

[53]

Zhang, K. S., Wu, W., Zhu, H. H., Zhang, L. Y., Li, X. J., & Zhang, H. (2020). A modified method of discontinuity trace mapping using threedimensional point clouds of rock mass surfaces. Journal of Rock Mechanics and Geotechnical Engineering, 12(3), 571-586.

[54]

Zhang, L. Y., & Zhu, H. (2007). Three-dimensional Hoek-Brown strength criterion for rocks. Journal of Geotechnical and Geoenvironmental Engineering, 133(9), 1128-1135.

[55]

Zhang, Q., Wang, X. J., He, L., & Tian, L. G. (2021). Estimation of fracture orientation distributions from a sampling window based on geometric probabilistic method. Rock Mechanics and Rock Engineering, 54(6), 3051-3075.

[56]

Zhang, Q., & Zhu, H. H. (2018). Collaborative 3D geological modeling analysis based on multi-source data standard. Engineering Geology, 246, 233-244.

[57]

Zhang, Q., Zhu, H. H., & Zhang, L. Y. (2013). Modification of a generalized three-dimensional Hoek-Brown strength criterion. International Journal of Rock Mechanics and Mining Sciences, 59, 80-96.

[58]

Zhang, Y. S., Wu, L. X., Guo, J. T., & Yang, Y. Z. (2010). An agroundunderground seamlessly integrated multi-scale modeling method considering semantics. Journal of Northeastern University. Natural Science, 31(9), 1341-1344 (in Chinese).

[59]

Zheng, G. Z., & Shen, Y. L. (2004). 3D analysys of geological characteristics and status research of 3d geology modelling. Advance in Earth Sciences, 19(2), 218-223 (in Chinese).

[60]

Zhu, H. H., Huang, B. Q., Zhang, Q., & Qi, L. (2016). Elastoplastic rock constitutive model based on generalized Hoek-Brown strength criterion and its numerical implementation. Engineering Mechanics, 33(2), 41-49 (in Chinese).

[61]

Zhu, Y. M., Zhou, J. J., Zhang, B., Wang, H. C., & Huang, M. Q. (2022). Statistical analysis of major tunnel construction accidents in China from 2010 to 2020. Tunnelling and Underground Space Technology, 124, 104460.

PDF (9733KB)

43

Accesses

0

Citation

Detail

Sections
Recommended

/