Synergistic In Situ Hydrolysis Polymerization for Efficient Air-Fabricated Inorganic Perovskite Solar Cells

Kun Wang , Sihong Yue , Tianxiang Li , Yu Tong , Jingyuan Tian , Yali Chen , Ziyong Kang , Feng Yang , Hongqiang Wang

SusMat ›› 2025, Vol. 5 ›› Issue (4) : e70032

PDF
SusMat ›› 2025, Vol. 5 ›› Issue (4) : e70032 DOI: 10.1002/sus2.70032
RESEARCH ARTICLE

Synergistic In Situ Hydrolysis Polymerization for Efficient Air-Fabricated Inorganic Perovskite Solar Cells

Author information +
History +
PDF

Abstract

Inorganic lead halide perovskites, especially CsPbI3, have witnessed significant progress in photovoltaic field due to their outstanding optoelectronic properties and high thermal stability. However, high-performance inorganic perovskite solar cells (IPSCs) are generally realized by strictly controlling the environmental humidity (mostly lower than 40%) during fabrication, which is undesirable for reducing fabrication cost and promoting further industrial production. Herein, a synergistic in situ hydrolysis polymerization strategy through 3,3,3-(trifluoropropyl)trichlorosilane (TFCS) and (3-2-aminoethylamino)propyltrimethoxysilane (AEMS) treatment is reported to prevent water invasion and realize efficient CsPbI3 IPSCs in highly humid air. TFCS not only regulates the crystallization process via hydrolysis reaction, but also stabilizes the phase structure by passivating the defects and producing a hydrophobic protection layer. Additionally, TFCS facilitates in situ polymerization of upper layer AEMS, thus promoting further enhanced protection of perovskites against ambient moisture. As a result, the CsPbI3 IPSCs fabricated at 45% humidity exhibit a dramatically improved efficiency of 20.09%, representing a record value for the inverted IPSCs fabricated in air with humidity over 40%. Moreover, the environmental humidity window for device fabrication can be broadened to 60%. This work provides an effective approach to stabilizing air-processed CsPbI3 and favoring the practical industrial manufacture to further boost their cost-effective applications.

Keywords

ambient-air fabrication / high efficiency over 20% / hydrolysis polymerization / inorganic perovskite solar cells / organosilane

Cite this article

Download citation ▾
Kun Wang, Sihong Yue, Tianxiang Li, Yu Tong, Jingyuan Tian, Yali Chen, Ziyong Kang, Feng Yang, Hongqiang Wang. Synergistic In Situ Hydrolysis Polymerization for Efficient Air-Fabricated Inorganic Perovskite Solar Cells. SusMat, 2025, 5(4): e70032 DOI:10.1002/sus2.70032

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. De Wolf, J. Holovsky, S.-J. Moon, et al., “Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance,” Journal of Physical Chemistry Letters 5 (2014): 1035-1039.

[2]

V. D'Innocenzo, G. Grancini, M. J. P. Alcocer, et al., “Excitons Versus Free Charges in Organo-Lead Tri-Halide Perovskites,” Nature Communications 5 (2014): 3586.

[3]

S. D. Stranks, G. E. Eperon, G. Grancini, et al., “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342 (2013): 341-344.

[4]

“Best Research-Cell Efficiency Chart,” accessed April 2025, https://wwwnrelgov/pv/cell-efficiency.

[5]

H. Chen, C. Liu, J. Xu, et al., “Improved Charge Extraction in Inverted Perovskite Solar Cells With Dual-Site-Binding Ligands,” Science 384 (2024): 189-193.

[6]

C. C. Boyd, R. Cheacharoen, T. Leijtens, and M. D. McGehee, “Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics,” Chemical Review 119 (2019): 3418-3451.

[7]

N. Li, X. Niu, Q. Chen, and H. Zhou, “Towards Commercialization: The Operational Stability of Perovskite Solar Cells,” Chemical Society Reviews 49 (2020): 8235-8286.

[8]

R. J. Sutton, G. E. Eperon, L. Miranda, et al., “Bandgap-Tunable Cesium Lead Halide Perovskites With High Thermal Stability for Efficient Solar Cells,” Advanced Energy Materials 6 (2016): 1502458.

[9]

R. Chen, Y. Hui, B. Wu, et al., “Moisture-Tolerant and High-Quality α-CsPbI3 Films for Efficient and Stable Perovskite Solar Modules,” Journal of Materials Chemistry A 8 (2020): 9597-9606.

[10]

J. Lin, M. Lai, L. Dou, et al., “Thermochromic Halide Perovskite Solar Cells,” Nature Materials 17 (2018): 261-267.

[11]

W. Xiang, S. Liu, and W. Tress, “A Review on the Stability of Inorganic Metal Halide Perovskites: Challenges and Opportunities for Stable Solar Cells,” Energy & Environmental Science 14 (2021): 2090-2113.

[12]

X. Tan, S. Wang, Q. Zhang, et al., “Stabilizing CsPbI3 Perovskite for Photovoltaic Applications,” Matter 6 (2023): 691-727.

[13]

Y. Yue, R. Yang, W. Zhang, Q. Cheng, H. Zhou, and Y. Zhang, “Cesium Cyclopropane Acid-Aided Crystal Growth Enables Efficient Inorganic Perovskite Solar Cells With a High Moisture Tolerance,” Angewandte Chemie International Edition 63 (2024): e202315717.

[14]

M.-H. Li, S. Wang, X. Ma, et al., “Hydrogen-Bonding-Facilitated Dimethylammonium Extraction for Stable and Efficient CsPbI3 Solar Cells With Environmentally Benign Processing,” Joule 7 (2023): 2595-2608.

[15]

T. Li, W. Li, K. Wang, et al., “Ambient Air Processed Inverted Inorganic Perovskite Solar Cells With Over 21% Efficiency Enabled by Multifunctional Ethacridine Lactate,” Angewandte Chemie International Edition 63 (2024): e202407508.

[16]

T. Li, K. Wang, Y. Tong, et al., “In Situ Dehydration Condensation of Self-Assembled Molecules Enables Stabilization of CsPbI3 Perovskites for Efficient Photovoltaics,” Advanced Functional Materials 34 (2024): 2409621.

[17]

C. Lu, X. Guo, W. Zhang, et al., “Efficient Inverted CsPbI3 Solar Cells With Pb-S Contained Organosulfide-Halide Perovskite Heterojunction,” Advanced Functional Materials 34 (2024): 2403563.

[18]

Z. Yi, X. Li, Y. Xiong, et al., “Self-Assembled Monolayers (SAMs) in Inverted Perovskite Solar Cells and Their Tandem Photovoltaics Application,” Interdisciplinary Materials 3 (2024): 203-244.

[19]

K. Wang, Y. Tong, L. Cao, et al., “Progress of Inverted Inorganic Cesium Lead Halide Perovskite Solar Cells,” Cell Reports Physical Science 4 (2023): 101726.

[20]

C. Lu, X. Li, X. Guo, et al., “Efficient Inverted CsPbI3 Perovskite Solar Cells Fabricated in Common Air,” Chemical Engineering Journal 452 (2023): 139495.

[21]

S. Fu, W. Zhang, X. Li, J. Guan, W. Song, and J. Fang, “Humidity-Assisted Chlorination With Solid Protection Strategy for Efficient Air-Fabricated Inverted CsPbI3 Perovskite Solar Cells,” ACS Energy Letters 6 (2021): 3661-3668.

[22]

X. Liu, J. Zhang, H. Wang, et al., “CsPbI3 Perovskite Solar Module With Certified Aperture Area Efficiency >18% Based on Ambient-Moisture-Assisted Surface Hydrolysis,” Joule 8 (2024): 2851-2862.

[23]

C. Li, T. Yu, W. Hongqiang, and W. Kun, “Challenges and Modification Strategies of Air-Processed All-Inorganic CsPbX3 Perovskite Films for Efficient Photovoltaics,” Energy Materials 4 (2024): 400055.

[24]

T. Li, W. Li, K. Wang, et al., “Interface Engineering With Formamidinium Salts for Improving Ambient-Processed Inverted CsPbI3 Photovoltaic Performance: Intermediate- vs Post-Treatment,” ACS Applied Materials & Interfaces 15 (2023): 51350-51359.

[25]

T. Xu, W. Xiang, X. Ru, et al., “Enhancing Stability and Efficiency of Inverted Inorganic Perovskite Solar Cells With In-Situ Interfacial Cross-Linked Modifier,” Advanced Materials 36 (2024): 2312237.

[26]

M. H. Li, X. Gong, S. Wang, et al., “Facile Hydrogen-Bonding Assisted Crystallization Modulation for Large-Area High-Quality CsPbI2 Br Films and Efficient Solar Cells,” Angewandte Chemie International Edition 63 (2024): e202318591.

[27]

J. Zhang, G. Zhang, P. Y. Su, et al., “1D Choline-PbI3-Based Heterostructure Boosts Efficiency and Stability of CsPbI3 Perovskite Solar Cells,” Angewandte Chemie International Edition 62 (2023): e202303486.

[28]

H. Li, B. Chang, L. Wang, et al., “Surface Reconstruction for Tin-Based Perovskite Solar Cells,” ACS Energy Letters 7 (2022): 3889-3899.

[29]

Y. Chen, Y. Tong, F. Yang, et al., “Modulating Nucleation and Crystal Growth of Tin Perovskite Films for Efficient Solar Cells,” Nano Letters 24 (2024): 5460-5466.

[30]

J. Qiu, X. Mei, M. Zhang, et al., “Dipolar Chemical Bridge Induced CsPbI3 Perovskite Solar Cells With 21.86 % Efficiency,” Angewandte Chemie International Edition 63 (2024): e202401751.

[31]

J. Huang, H. Wang, C. Jia, et al., “Advances in Crystallization Regulation and Defect Suppression Strategies for All-Inorganic CsPbX3 Perovskite Solar Sells,” Progress in Materials Science 141 (2024): 101223.

[32]

H. Sun, J. Zhang, X. Gan, et al., “Pb-Reduced CsPb0.9Zn0.1I2Br Thin Films for Efficient Perovskite Solar Cells,” Advanced Energy Materials 9 (2019): 1900896.

[33]

R. Azmi, D. S. Utomo, B. Vishal, et al., “Double-Side 2-Dimensional/3-Dimensional Heterojunctions for Inverted Perovskite Solar Cells,” Nature 628 (2024): 93-98.

[34]

F. Cai, Y. Yan, J. Yao, et al., “Ionic Additive Engineering toward High-Efficiency Perovskite Solar Cells With Reduced Grain Boundaries and Trap Density,” Advanced Functional Materials 28 (2018): 1801985.

[35]

R. H. Bube, “Trap Density Determination by Space-Charge-Limited Currents,” Journal of Applied Physics 33 (1962): 1733-1737.

[36]

J. Yuan, D. Zhang, B. Deng, J. Du, W. C. H. Choy, and J. Tian, “High Efficiency Inorganic Perovskite Solar Cells Based on Low Trap Density and High Carrier Mobility CsPbI3 Films,” Advanced Functional Materials 32 (2022): 2209070.

[37]

S. Mariotti, E. Köhnen, F. Scheler, et al., “Interface Engineering for High-Performance, Triple-Halide Perovskite-Silicon Tandem Solar Cells,” Science 381 (2023): 63-69.

[38]

M. Liu, L. Bi, W. Jiang, et al., “Compact Hole-Selective Self-Assembled Monolayers Enabled by Disassembling Micelles in Solution for Efficient Perovskite Solar Cells,” Advanced Materials 35 (2023): e2304415.

[39]

T. Du, J. Kim, J. Ngiam, et al., “Elucidating the Origins of Subgap Tail States and Open-Circuit Voltage in Methylammonium Lead Triiodide Perovskite Solar Cells,” Advanced Functional Materials 28 (2018): 1801808.

[40]

M. Du, X. Zhu, L. Wang, et al., “High-Pressure Nitrogen-Extraction and Effective Passivation to Attain Highest Large-Area Perovskite Solar Module Efficiency,” Advanced Materials 32 (2020): 2004979.

[41]

J. Shi, M. W. Samad, F. Li, et al., “Dual-Site Molecular Dipole Enables Tunable Interfacial Field toward Efficient and Stable Perovskite Solar Cells,” Advanced Materials 36 (2024): 2410464.

[42]

N. Sun, S. Fu, Y. Li, et al., “Tailoring Crystallization Dynamics of CsPbI3 for Scalable Production of Efficient Inorganic Perovskite Solar Cells,” Advanced Functional Materials 34 (2024): 2309894.

[43]

J. Guo, G. Meng, X. Zhang, et al., “Dual-Interface Modulation With Covalent Organic Framework Enables Efficient and Durable Perovskite Solar Cells,” Advanced Materials 35 (2023): 2302839.

[44]

J. Guo, B. Wang, J. Min, et al., “Stabilizing Lead Halide Perovskites Via an Organometallic Chemical Bridge for Efficient and Stable Photovoltaics,” ACS Nano 18 (2024): 19865-19874.

RIGHTS & PERMISSIONS

2025 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/