AI-Driven Advances in Sustainable Materials for Green Energy: From Innovation to Lifecycle Management

Yuehui Xian , Cheng Li , Yangyang Xu , Yumei Zhou , Dezhen Xue

SusMat ›› 2025, Vol. 5 ›› Issue (5) : e70030

PDF
SusMat ›› 2025, Vol. 5 ›› Issue (5) : e70030 DOI: 10.1002/sus2.70030
REVIEW

AI-Driven Advances in Sustainable Materials for Green Energy: From Innovation to Lifecycle Management

Author information +
History +
PDF

Abstract

Artificial intelligence (AI) is revolutionizing sustainable materials science, yet a comprehensive and timely evaluation of the rapidly evolving AI techniques applied across the entire materials lifecycle remains lacking. This work reviews AI-driven advances in sustainable materials, specifically focusing on battery materials, thermal management materials, energy conversion materials, and catalysts. The key patterns, capabilities, and limitations of AI are identified across three interconnected phases: sustainable materials design (leveraging predictive and generative models for accelerated discovery), green processing (integrating adaptive synthesis optimization and autonomous experimentation), and extending to lifecycle management (encompassing real-time monitoring, predictive maintenance, and intelligent recycling). Then, the persistent challenges, including data sparsity, domain-specific knowledge integration, and limited model generalizability, are investigated, followed by an exploration of emerging solutions such as federated learning for privacy-preserving data sharing, physics-informed neural networks for knowledge integration, and multimodal AI for cross-modal knowledge transfer. Finally, the computational sustainability challenges of AI methods themselves are also discussed. This review highlights key bottlenecks impeding scalable adoption and discuss pathways for realizing the full potential of AI in sustainable materials development.

Keywords

artificial intelligence in materials science / green manufacturing / materials informatics / material synthesis / sustainable materials design

Cite this article

Download citation ▾
Yuehui Xian, Cheng Li, Yangyang Xu, Yumei Zhou, Dezhen Xue. AI-Driven Advances in Sustainable Materials for Green Energy: From Innovation to Lifecycle Management. SusMat, 2025, 5(5): e70030 DOI:10.1002/sus2.70030

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

E. Olivetti and J. Cullen, “Toward a Sustainable Materials System,” Science 360, no. 6396 (2018): 1396-1398.

[2]

S. Chu, Y. Cui, and N. Liu, “The Path Towards Sustainable Energy,” Nature Materials 16, no. 1 (2017): 16-22.

[3]

Y. Tang, Q. Zhang, W. Zuo, et al., “Sustainable Layered Cathode With Suppressed Phase Transition for Long-Life Sodium-Ion Batteries,” Nature Sustainability 7, no. 3 (2024): 348-359.

[4]

Y. Hu and Y. Li, Unlocking Sustainable Na-ion Batteries Into Industry (ACS Publications, 2021).

[5]

W. Aftab, A. Usman, J. Shi, K. Yuan, M. Qin, and R. Zou, “Phase Change Material-Integrated Latent Heat Storage Systems for Sustainable Energy Solutions,” Energy & Environmental Science 14, no. 8 (2021): 4268-4291.

[6]

T. Epps, L. Korley, T. Yan, K. Beers, and T. Burt, “Sustainability of Synthetic Plastics: Considerations in Materials Life-Cycle Management,” Jacs Au 2, no. 1 (2021): 3-11.

[7]

Z. Liang, C. Cai, G. Peng, et al., “Hydrometallurgical Recovery of Spent Lithium Ion Batteries: Environmental Strategies and Sustainability Evaluation,” ACS Sustainable Chemistry & Engineering 9, no. 17 (2021): 5750-5767.

[8]

S. Chibani and F. Coudert, “Machine Learning Approaches for the Prediction of Materials Properties,” APL Materials 8, no. 8 (2020): 080701.

[9]

P. Xu, X. Ji, M. Li, and W. Lu, “Small Data Machine Learning in Materials Science,” NPJ Computational Materials 9, no. 1 (2023): 42.

[10]

S. Kench, I. Squires, A. Dahari, F. Brosa Planella, S. A. Roberts, and S. J. Cooper, “Li-Ion Battery Design Through Microstructural Optimization Using Generative AI,” Matter 7, no. 12 (2024): 4260-4269.

[11]

E. Chenebuah, M. Nganbe, and A. Tchagang, “A Deep Generative Modeling Architecture for Designing Lattice-Constrained Perovskite Materials,” NPJ Computational Materials 10, no. 1 (2024): 198.

[12]

T. Dolla, S. Ajayi, L. Sikeyi, M. Mathe, and N. Palaniyandy, “Advances in Solid-State Batteries Fabrication Strategies for Their Manufacture,” Journal of Energy Storage 106 (2025): 114737.

[13]

A. Sazvar, M. Hajibandeh, P. Vafaei, E. Hosseinzadeh, and M. Jabbari, “Review of Recent Progress in Sintering of Solid-State Batteries: Application and Modelling,” Journal of Energy Storage 101 (2024): 113863.

[14]

R. Wang, Q. Dong, C. Wang, et al., “High-Temperature Ultrafast Sintering: Exploiting a New Kinetic Region to Fabricate Porous Solid-State Electrolyte Scaffolds,” Advanced Materials 33, no. 34 (2021): 2100726.

[15]

Z. Yao, Y. Lum, A. Johnston, et al., “Machine Learning for a Sustainable Energy Future,” Nature Reviews Materials 8, no. 3 (2023): 202-215.

[16]

S. Plathottam, A. Rzonca, R. Lakhnori, and C. Iloeje, “A Review of Artificial Intelligence Applications in Manufacturing Operations,” Journal of Advanced Manufacturing and Processing 5, no. 3 (2023): e10159.

[17]

R. Gao, J. Krüger, M. Merklein, H. Möhring, and J. Váncza, “Artificial Intelligence in Manufacturing: State of the Art, Perspectives, and Future Directions,” CIRP Annals 73, no. 2 (2024): 723-749.

[18]

G. Dastgeer, S. Nisar, M. Zulfiqar, J. Eom, M. Imran, and K. Akbar, “A Review on Recent Progress and Challenges in High-Efficiency Perovskite Solar Cells,” Nano Energy 132 (2024): 110401.

[19]

M. Afroz, R. Ratnesh, S. Srivastava, and J. Singh, “Perovskite Solar Cells: Progress, Challenges, and Future Avenues to Clean Energy,” Solar Energy 287 (2025): 113205.

[20]

R. Li, L. Bao, L. Chen, et al., “Accelerated Aging of Lithium-Ion Batteries: Bridging Battery Aging Analysis and Operational Lifetime Prediction,” Science Bulletin 68, no. 23 (2023): 3055-3079.

[21]

H. Adenusi, G. Chass, S. Passerini, K. Tian, and G. Chen, “Lithium Batteries and the Solid Electrolyte Interphase (SEI)—Progress and Outlook,” Advanced Energy Materials 13, no. 10 (2023): 2203307.

[22]

J. Lu, R. Xiong, J. Tian, C. Wang, and F. Sun, “Deep Learning to Estimate Lithium-Ion Battery State of Health Without Additional Degradation Experiments,” Nature Communications 14, no. 1 (2023): 2760.

[23]

Q. Wang, W. Li, and A. Mohajer, “Load-Aware Continuous-Time Optimization for Multi-Agent Systems: Toward Dynamic Resource Allocation and Real-Time Adaptability,” Computer Networks 250 (2024): 110526.

[24]

M. Rezaei, A. Nekahi, A. Kumar M R, et al., “A Review of Lithium-Ion Battery Recycling for Enabling a Circular Economy,” Journal of Power Sources 630 (2025): 236157.

[25]

X. Ma, Z. Meng, M. Bellonia, et al., “The Evolution of Lithium-Ion Battery Recycling,” Nature Reviews Clean Technology 1, no. 1 (2025): 75-94.

[26]

S. Preet and S. Smith, “A Comprehensive Review on the Recycling Technology of Silicon Based Photovoltaic Solar Panels: Challenges and Future Outlook,” Journal of Cleaner Production 448 (2024): 141661.

[27]

M. Chowdhury, K. Rahman, T. Chowdhury, et al., “An Overview of Solar Photovoltaic Panels′ End-of-Life Material Recycling,” Energy Strategy Reviews 27 (2020): 100431.

[28]

S. Tao, H. Liu, C. Sun, et al., “Collaborative and Privacy-Preserving Retired Battery Sorting for Profitable Direct Recycling via Federated Machine Learning,” Nature Communications 14, no. 1 (2023): 8032.

[29]

T. Ibn-Mohammed, K. Mustapha, M. Abdulkareem, A. Fuensanta, V. Pecunia, and C. Dancer, “Toward Artificial Intelligence and Machine Learning-Enabled Frameworks for Improved Predictions of Lifecycle Environmental Impacts of Functional Materials and Devices,” MRS Communications 13, no. 5 (2023): 795-811.

[30]

S. Lodhi, A. Gill, and H. Hussain, “Green Innovations: Artificial Intelligence and Sustainable Materials in Production,” BULLET: Jurnal Multidisiplin Ilmu 3, no. 4 (2024): 492-507.

[31]

P. Dang, J. Hu, Y. Xian, et al., “Elastocaloric Thermal Battery: Ultrahigh Heat-Storage Capacity Based on Generative Learning-Designed Phase-Change Alloys,” Advanced Materials 37, no. 8 (2025): 2412198.

[32]

L. Barroso-Luque, M. Shuaibi, X. Fu, et al., “Open Materials 2024 (omat24) Inorganic Materials Dataset and Models,” Preprint, submitted in 2024, https://doi.org/10.48550/arXiv.2410.12771.

[33]

F. Strieth-Kalthoff, H. Hao, V. Rathore, et al., “Delocalized, Asynchronous, Closed-Loop Discovery of Organic Laser Emitters,” Science 384, no. 6697 (2024): eadk9227.

[34]

J. Noh, H. Doan, H. Job, et al., “An Integrated High-Throughput Robotic Platform and Active Learning Approach for Accelerated Discovery of Optimal Electrolyte Formulations,” Nature Communications 15, no. 1 (2024): 2757.

[35]

A. Kumar, B. Bakshi, M. Ramteke, and H. Kodamana, “Recycle-BERT: Extracting Knowledge About Plastic Waste Recycling by Natural Language Processing,” ACS Sustainable Chemistry & Engineering 11, no. 32 (2023): 12123-12134.

[36]

P. M. Attia, A. Grover, N. Jin, et al., “Closed-Loop Optimization of Fast-Charging Protocols for Batteries with Machine Learning,” Nature 578, no. 7795 (2020): 397-402.

[37]

T. Gensch, G. dos Passos Gomes, P. Friederich, et al., “A Comprehensive Discovery Platform for Organophosphorus Ligands for Catalysis,” Journal of the American Chemical Society 144, no. 3 (2022): 1205-1217.

[38]

K. Sasidhar, N. Siboni, J. Mianroodi, M. Rohwerder, J. Neugebauer, and D. Raabe, “Deep Learning Framework for Uncovering Compositional and Environmental Contributions to Pitting Resistance in Passivating Alloys,” NPJ Materials Degradation 6, no. 1 (2022): 71.

[39]

P. Frazier, “A tutorial on Bayesian optimization,” arXiv (2018).

[40]

J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving (Addison-Wesley Longman Publishing Co., Inc, 1984).

[41]

H. Zhang, H. Fu, W. Li, et al., “Empowering the Sustainable Development of High-End Alloys via Interpretive Machine Learning,” Advanced Materials 36, no. 48 (2024): 2404478.

[42]

F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-Learn: Machine Learning in Python,” Journal of Machine Learning Research 12 (2011): 2825-2830.

[43]

A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An Imperative Style, High-Performance Deep Learning Library,” Advances in Neural Information Processing Systems 32 (2019): 8026-8037.

[44]

A. Jain, S. P. Ong, G. Hautier, et al., “Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation,” APL Materials 1, no. 1 (2013): 011002.

[45]

M. Haghighatlari, G. Vishwakarma, D. Altarawy, et al., “ChemML: A Machine Learning and Informatics Program Package for the Analysis, Mining, and Modeling of Chemical and Materials Data,” Wiley Interdisciplinary Reviews: Computational Molecular Science 10, no. 4 (2020): e1458.

[46]

L. Ward, A. Dunn, A. Faghaninia, et al., “Matminer: An Open Source Toolkit for Materials Data Mining,” Computational Materials Science 152 (2018): 60-69.

[47]

M. Yamazaki, Y. Xu, M. Murata, H. Tanaka, K. Kamihira, and K. Kimura, “NIMS Structural Materials Databases and Cross Search Engine Œ MatNavi,” in BALTICA VII (2007), 193-207. ETDE WEB.

[48]

Y. Xu, M. Yamazaki, and P. Villars, “Inorganic Materials Database for Exploring the Nature of Material,” Japanese Journal of Applied Physics 50, no. S11 (2011): 11RH02.

[49]

J. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, “Materials Design and Discovery With High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD),” Jom Journal of the Minerals Metals and Materials Society 65 (2013): 1501-1509.

[50]

R. Downs and M. Hall-Wallace, “The American Mineralogist Crystal Structure Database,” American Mineralogist 88, no. 1 (2003): 247-250.

[51]

Y. Liang, M. Chen, Y. Wang, et al., “A Universal Model for Accurately Predicting the Formation Energy of Inorganic Compounds,” Science China Materials 66, no. 1 (2022): 343-351.

[52]

J. S. Hummelshøj, F. Abild-Pedersen, F. Studt, T. Bligaard, and J. K. Nørskov, “CatApp: A Web Application for Surface Chemistry and Heterogeneous Catalysis,” Angewandte Chemie International Edition 51, no. 1 (2012): 272-274.

[53]

H. Pence and A. Williams, ChemSpider: An Online Chemical Information Resource (ACS Publications, 2010).

[54]

D. Landis, J. Hummelshøj, S. Nestorov, et al., “The Computational Materials Repository,” Computing in Science & Engineering 14, no. 6 (2012): 51-57.

[55]

S. Gražulis, D. Chateigner, R. T. Downs, et al., “Crystallography Open Database-An Open-Access Collection of Crystal Structures,” Journal of Applied Crystallography 42, no. 4 (2009): 726-729.

[56]

J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, et al., “The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid,” Journal of Physical Chemistry Letters 2, no. 17 (2011): 2241-2251.

[57]

J. Ralph, D. Von Bargen, P. Martynov, et al., “Mindat. Org-the Open Access Mineralogy Database to Accelerate Data-Intensive Geoscience Research,” American Mineralogist 110 (2024): 833-844.

[58]

M. Scheidgen, L. Himanen, A. N. Ladines, et al., “NOMAD: A Distributed Web-Based Platform for Managing Materials Science Research Data,” Journal of Open Source Software 8, no. 90 (2023): 5388.

[59]

L. Chanussot, A. Das, S. Goyal, et al., “Open Catalyst 2020 (OC20) Dataset and Community Challenges,” ACS Catalysis 11, no. 10 (2021): 6059-6072.

[60]

E. Tadmor, R. Elliott, J. Sethna, R. Miller, and C. Becker, “The Potential of Atomistic Simulations and the Knowledgebase of Interatomic Models,” Jom Journal of the Minerals Metals and Materials Society 63, no. 7 (2011): 17.

[61]

Y. Wang, J. Xiao, T. Suzek, J. Zhang, J. Wang, and S. Bryant, “PubChem: A Public Information System for Analyzing Bioactivities of Small Molecules,” Nucleic Acids Research 37, no. S2 (2009): W623-W633.

[62]

O. Benafan, G. Bigelow, and A. Young, “Shape Memory Materials Database Tool—A Compendium of Functional Data for Shape Memory Materials,” Advanced Engineering Materials 22, no. 7 (2020): 1901370.

[63]

A. Khorshidi and A. Peterson, “AMP: A Modular Approach to Machine Learning in Atomistic Simulations,” Computer Physics Communications 207 (2016): 310-324.

[64]

A. Larsen, J. Mortensen, J. Blomqvist, et al., “The Atomic Simulation Environment—A Python Library for Working With Atoms,” Journal of Physics: Condensed Matter 29, no. 27 (2017): 273002.

[65]

A. Ganose, H. Sahasrabuddhe, M. Asta, et al., Atomate2: Modular Workflows for Materials Science (2025).

[66]

M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter, “Auto-Sklearn 2.0: Hands-Free Automl Via Meta-Learning,” Journal of Machine Learning Research 23, no. 261 (2022): 1-61.

[67]

M. Balandat, B. Karrer, D. Jiang, et al., “BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization,” Advances in Neural Information Processing Systems 33 (2020): 21524-21538.

[68]

B. Ramsundar, Molecular Machine Learning with DeepChem (Stanford University, 2018).

[69]

J. Gardner, G. Pleiss, K. Weinberger, D. Bindel, and A. Wilson, “Gpytorch: Blackbox Matrix-Matrix Gaussian Process Inference With Gpu Acceleration,” Advances in Neural Information Processing Systems 31 (2018): 7587-7597.

[70]

A. Dunn, Q. Wang, A. Ganose, D. Dopp, and A. Jain, “Benchmarking Materials Property Prediction Methods: The Matbench Test Set and Automatminer Reference Algorithm,” NPJ Computational Materials 6, no. 1 (2020): 138.

[71]

P. Barrett, J. Hunter, J. Miller, J. Hsu, and P. Greenfield, “Matplotlib-A Portable Python Plotting Package,” Astronomical Data Analysis Software and Systems XIV 347 (2005): 91.

[72]

A. Stukowski, “Visualization and Analysis of Atomistic Simulation Data With OVITO-the Open Visualization Tool,” Modelling and Simulation in Materials Science and Engineering 18, no. 1 (2009): 015012.

[73]

J. Janssen, S. Surendralal, Y. Lysogorskiy, et al., “Pyiron: An Integrated Development Environment for Computational Materials Science,” Computational Materials Science 163 (2019): 24-36.

[74]

S. Ong, W. Richards, A. Jain, et al., “Python Materials Genomics (Pymatgen): A Robust, Open-Source Python Library for Materials Analysis,” Computational Materials Science 68 (2013): 314-319.

[75]

J. Blank and K. Deb, “Pymoo: Multi-Objective Optimization in Python,” IEEE Access 8 (2020): 89497-89509.

[76]

P. Virtanen, R. Gommers, T. E. Oliphant, et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods 17, no. 3 (2020): 261-272.

[77]

C. Glass, A. Oganov, and N. Hansen, “USPEX—Evolutionary Crystal Structure Prediction,” Computer Physics Communications 175, no. 11-12 (2006): 713-720.

[78]

S. Curtarolo, W. Setyawan, G. L. Hart, et al., “AFLOW: An Automatic Framework for High-Throughput Materials Discovery,” Computational Materials Science 58 (2012): 218-226.

[79]

K. Winther, M. Hoffmann, J. Boes, O. Mamun, M. Bajdich, and T. Bligaard, “Catalysis-Hub. Org, an Open Electronic Structure Database for Surface Reactions,” Scientific Data 6, no. 1 (2019): 75.

[80]

J. O'Mara, B. Meredig, and K. Michel, “Materials Data Infrastructure: A Case Study of the Citrination Platform to Examine Data Import, Storage, and Access,” Jom Journal of the Minerals Metals and Materials Society 68, no. 8 (2016): 2031-2034.

[81]

D. Zhang and H. Li, “Digital Catalysis Platform (Digcat): A Gateway to Big Data and Ai-Powered Innovations in Catalysis,” (2024).

[82]

K. Choudhary, K. F. Garrity, A. C. E. Reid, et al., “The Joint Automated Repository for Various Integrated Simulations (JARVIS) for Data-Driven Materials Design,” NPJ Computational Materials 6, no. 1 (2020): 173.

[83]

L. Talirz, S. Kumbhar, E. Passaro, et al., “Materials Cloud, a Platform for Open Computational Science,” Scientific Data 7, no. 1 (2020): 299.

[84]

G. Klimeck, M. McLennan, S. Brophy, G. Adams, and M. Lundstrom, “Nanohub. Org: Advancing Education and Research in Nanotechnology,” Computing in Science & Engineering 10, no. 5 (2008): 17-23.

[85]

W. Lee, S. Muhammad, C. Sergey, et al., “Advances in the Cathode Materials for Lithium Rechargeable Batteries,” Angewandte Chemie International Edition 59, no. 7 (2020): 2578-2605.

[86]

G. Bhutada, “Breaking Down the Cost of an EV Battery Cell,” Visual Capitalist 2022, https://www.visualcapitalist.com/breaking-down-the-cost-of-an-ev-battery-cell/.

[87]

C. Coley, L. Rogers, W. Green, and K. Jensen, “SCScore: Synthetic Complexity Learned From a Reaction Corpus,” Journal of Chemical Information and Modeling 58, no. 2 (2018): 252-261.

[88]

X. Zhou, C. Xu, X. Guo, et al., “Computational and Machine Learning-Assisted Discovery and Experimental Validation of Conjugated Sulfonamide Cathodes for Lithium-Ion Batteries,” Advanced Energy Materials 15, no. 25 (2024): 2401658.

[89]

S. Wang, Y. Ji, J. Liu, et al., “Integrating Crystal Structure and Numerical Data for Predictive Models of Lithium-Ion Battery Materials: A Modified Crystal Graph Convolutional Neural Networks Approach,” Journal of Energy Storage 80 (2024): 110220.

[90]

S. Gong, K. Yan, T. Xie, et al., “Examining Graph Neural Networks for Crystal Structures: Limitations and Opportunities for Capturing Periodicity,” Science Advances 9, no. 45 (2023): eadi3245.

[91]

Z. Han, A. Chen, Z. Li, et al., “Machine Learning-Based Design of Electrocatalytic Materials Towards High-Energy Lithium|| Sulfur Batteries Development,” Nature Communications 15, no. 1 (2024): 8433.

[92]

M. Vempally and R. Dhanarathinam, “Design and Selection of Suitable Sustainable Phase Change Materials for Latent Heat Thermal Energy Storage System Using Data-Driven Machine Learning Models,” Journal of Thermal Analysis and Calorimetry 148, no. 20 (2023): 10697-10712.

[93]

F. Kolodziejczyk, B. Mortazavi, T. Rabczuk, and X. Zhuang, “Machine Learning Assisted Multiscale Modeling of Composite Phase Change Materials for Li-ion Batteries′ Thermal Management,” International Journal of Heat and Mass Transfer 172 (2021): 121199.

[94]

Y. Qu, S. Sun, and D. Zhou, “Prediction of Thermal Conductivity of Paraffin-Expanded Graphite Composite Phase Change Materials by Machine Learning Method,” Journal of Energy Storage 101 (2024): 113845.

[95]

F. Jaliliantabar, “Thermal Conductivity Prediction of Nano Enhanced Phase Change Materials: A Comparative Machine Learning Approach,” Journal of Energy Storage 46 (2022): 103633.

[96]

L. Ding, Y. Zhou, Y. Xu, et al., “Learning From Superelasticity Data to Search for Ti-Ni Alloys With Large Elastocaloric Effect,” Acta Materialia 218 (2021): 117200.

[97]

X. Wang, C. Tan, K. Zhang, et al., “High-Performance and Stress-Controllable Solid-Solid Phase Change Material for Long-Term Thermal Energy Storage,” Materials Today Energy 47 (2025): 101744.

[98]

J. Sun, R. Tu, Y. Xu, et al., “Machine Learning Aided Design of Single-Atom Alloy Catalysts for Methane Cracking,” Nature Communications 15, no. 1 (2024): 6036.

[99]

T. Wang, J. Hu, R. Ouyang, et al., “Nature of Metal-Support Interaction for Metal Catalysts on Oxide Supports,” Science 386, no. 6724 (2024): 915-920.

[100]

T. Xie and J. Grossman, “Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties,” Physical Review Letters 120, no. 14 (2018): 145301.

[101]

W. Park, J. Noh, G. Gu, et al., “Machine Learning-Enabled Fast Exploration of Stable and Active Single-Atom Catalysts for Oxygen Evolution Reaction,” Innovation Materials 2, no. 2 (2024): 100072.

[102]

R. Olson, R. Urbanowicz, P. Andrews, N. Lavender, L. Kidd, and J. Moore, “Automating Biomedical Data Science through Tree-Based Pipeline Optimization,” in Applications of Evolutionary Computation: 19th European Conference, EvoApplications 2016, Porto, Portugal, March 30-April 1, 2016, Proceedings, Part I 19 (Springer, 2016), 123-137.

[103]

M. Zhong, K. Tran, Y. Min, et al., “Accelerated Discovery of CO2 Electrocatalysts Using Active Machine Learning,” Nature 581, no. 7807 (2020): 178-183.

[104]

S. Lu, Q. Zhou, Y. Ouyang, Y. Guo, Q. Li, and J. Wang, “Accelerated Discovery of Stable Lead-Free Hybrid Organic-Inorganic Perovskites via Machine Learning,” Nature Communications 9, no. 1 (2018): 3405.

[105]

J. He, J. Li, C. Liu, et al., “Machine Learning Identified Materials Descriptors for Ferroelectricity,” Acta Materialia 209 (2021): 116815.

[106]

X. Jia, Y. Deng, X. Bao, et al., “Unsupervised Machine Learning for Discovery of Promising Half-Heusler Thermoelectric Materials,” NPJ Computational Materials 8, no. 1 (2022): 34.

[107]

S. Ye, N. Meftahi, I. Lyskov, et al., “Machine Learning-Assisted Exploration of a Versatile Polymer Platform With Charge Transfer-Dependent Full-Color Emission,” Chemistry 9, no. 4 (2023): 924-947.

[108]

J. Kaplan, S. McCandlish, T. Henighan, et al., “Scaling Laws for Neural Language Models,” Preprint, submitted in 2020, https://doi.org/10.48550/arXiv.2001.08361.

[109]

H. Lightman, V. Kosaraju, Y. Burda, et al., “Let's verify step by step,” Preprint, submitted in 2023, https://doi.org/10.48550/arXiv.2305.20050.

[110]

F. Häse, L. M. Roch, P. Friederich, and A. Aspuru-Guzik, “Aspuru-Guzik, Designing and Understanding Light-Harvesting Devices With Machine Learning,” Nature Communications 11, no. 1 (2020): 4587.

[111]

Y. Xian, P. Dang, Y. Tian, et al., “Compositional Design of Multicomponent Alloys Using Reinforcement Learning,” Acta Materialia 274 (2024): 120017.

[112]

W. Li, Z. Shen, R. Liu, et al., “Generative Learning Facilitated Discovery of High-Entropy Ceramic Dielectrics for Capacitive Energy Storage,” Nature Communications 15, no. 1 (2024): 4940.

[113]

C. Court, A. Jain, and J. Cole, “Inverse Design of Materials That Exhibit the Magnetocaloric Effect by Text-Mining of the Scientific Literature and Generative Deep Learning,” Chemistry of Materials 33, no. 18 (2021): 7217-7231.

[114]

Y. Wang, W. Sha, M. Xiao, C. Qiu, and L. Gao, “Deep-Learning-Enabled Intelligent Design of Thermal Metamaterials,” Advanced Materials 35, no. 33 (2023): 2302387.

[115]

P. Rajak, B. Wang, K. Nomura, et al., “Autonomous Reinforcement Learning Agent for Stretchable Kirigami Design of 2D Materials,” NPJ Computational Materials 7, no. 1 (2021): 1-8.

[116]

J. Datta, D. Datta, A. Nadimpally, and N. Koratkar, “Generative AI for Discovering Porous Oxide Materials for Next-Generation Energy Storage,” Cell Reports Physical Science 6, no. 7 (2025): 102665.

[117]

X. Lee, J. Waite, C. Yang, et al., “Fast Inverse Design of Microstructures via Generative Invariance Networks,” Nature Computational Science 1, no. 3 (2021): 229-238.

[118]

B. Sanchez-Lengeling and A. Aspuru-Guzik, “Inverse Molecular Design Using Machine Learning: Generative Models for Matter Engineering,” Science 361, no. 6400 (2018): 360-365.

[119]

Z. Zheng, Z. Rong, N. Rampal, C. Borgs, J. Chayes, and O. Yaghi, “A GPT-4 Reticular Chemist for Guiding MOF Discovery,” Angewandte Chemie International Edition 62, no. 46 (2023): e202311983.

[120]

Z. Yang, W. Ye, X. Lei, D. Schweigert, H. Kwon, and A. Khajeh, “De Novo Design of Polymer Electrolytes Using GPT-Based and Diffusion-Based Generative Models,” NPJ Computational Materials 10, no. 1 (2024): 296.

[121]

J. Westermayr, J. Gilkes, R. Barrett, and R. Maurer, “High-Throughput Property-Driven Generative Design of Functional Organic Molecules,” Nature Computational Science 3, no. 2 (2023): 139-148.

[122]

S. Kim, J. Noh, G. Gu, A. Aspuru-Guzik, and Y. Jung, “Generative Adversarial Networks for Crystal Structure Prediction,” ACS Central Science 6, no. 8 (2020): 1412-1420.

[123]

M. Alverson, S. G. Baird, R. Murdock, E. S.-H. Ho, J. Johnson, and T. D. Sparks, “Generative Adversarial Networks and Diffusion Models in Material Discovery,” Digital Discovery 3, no. 1 (2024): 62-80.

[124]

N. J. Szymanski, B. Rendy, Y. Fei, et al., “An Autonomous Laboratory for the Accelerated Synthesis of Novel Materials,” Nature 624, no. 7990 (2023): 86-91.

[125]

D. Xue, P. Balachandran, J. Hogden, J. Theiler, D. Xue, and T. Lookman, “Accelerated Search for Materials with Targeted Properties by Adaptive Design,” Nature Communications 7, no. 1 (2016): 1-9.

[126]

T. Lookman, “The Mesoscale and Multifunctional Materials Codesign: Insights and Challenges,” in Mesoscopic Phenomena in Multifunctional Materials: Synthesis, Characterization, Modeling and Applications (Springer, 2014): 57-72.

[127]

D. Xue, D. Xue, R. Yuan, et al., “An Informatics Approach to Transformation Temperatures of NiTi-Based Shape Memory Alloys,” Acta Materialia 125 (2017): 532-541.

[128]

C. Wen, Y. Zhang, C. Wang, et al., “Machine Learning Assisted Design of High Entropy Alloys With Desired Property,” Acta Materialia 170 (2019): 109-117.

[129]

Y. Zhang, C. Wen, C. Wang, et al., “Phase Prediction in High Entropy Alloys With a Rational Selection of Materials Descriptors and Machine Learning Models,” Acta Materialia 185 (2020): 528-539.

[130]

W. Trehern, R. Ortiz-Ayala, K. Atli, R. Arroyave, and I. Karaman, “Data-Driven Shape Memory Alloy Discovery Using Artificial Intelligence Materials Selection (AIMS) Framework,” Acta Materialia 228 (2022): 117751.

[131]

Y. Okazaki, Y. Fujita, H. Murata, et al., “Composition-Designed Multielement Perovskite Oxides for Oxygen Evolution Catalysis,” Chemistry of Materials 34, no. 24 (2022): 10973-10981.

[132]

A. G. Kusne, H. Yu, C. Wu, et al., “On-the-Fly Closed-Loop Materials Discovery via Bayesian Active Learning,” Nature Communications 11, no. 1 (2020): 5966.

[133]

X. Ge, J. Yin, Z. Ren, et al., “Atomic Design of Alkyne Semihydrogenation Catalysts via Active Learning,” Journal of the American Chemical Society 146, no. 7 (2024): 4993-5004.

[134]

Y. Tian, B. Hu, P. Dang, J. Pang, Y. Zhou, and D. Xue, “Noise-Aware Active Learning to Develop High-Temperature Shape Memory Alloys With Large Latent Heat,” Advanced Science 11, no. 44 (2024): 2406216.

[135]

S. S. SV, J. N. Law, C. Tripp, et al., “Multi-Objective Goal-Directed Optimization of De Novo Stable Organic Radicals for Aqueous Redox Flow Batteries,” Nature Machine Intelligence 4, no. 8 (2022): 720-730.

[136]

A. Biswas, A. Morozovska, M. Ziatdinov, E. Eliseev, and S. Kalinin, “Multi-Objective Bayesian Optimization of Ferroelectric Materials With Interfacial Control for Memory and Energy Storage Applications,” Journal of Applied Physics 130, no. 20 (2021): 204102.

[137]

J. Chen, P. Ou, Y. Chang, et al., “Adaptive Catalyst Discovery Using Multicriteria Bayesian Optimization with Representation Learning,” Preprint, submitted in 2024, https://doi.org/10.48550/arXiv.2404.12445.

[138]

P. Yin, X. Niu, S. Li, et al., “Machine-Learning-Accelerated Design of High-Performance Platinum Intermetallic Nanoparticle Fuel Cell Catalysts,” Nature Communications 15, no. 1 (2024): 415.

[139]

J. Wang, Z. Wang, P. Guo, X. Hu, J. Zhu, and T. Yu, “Multi-Objective Optimization of Phase Change Cooling Battery Module Based on Optimal Support Vector Machineoptimal Support Vector Machine,” Applied Thermal Engineering 236 (2024): 121386.

[140]

B. Lee, J. Lee, M. Kim, W. Park, and K. Sohn, “Discovery of Pb-Free Hybrid Organic-Inorganic 2D Perovskites Using a Stepwise Optimization Strategy,” Computational Materials 8, no. 1 (2022): 83.

[141]

M. Kim, S. Kang, H. Gyu Park, K. Park, and K. Min, “Maximizing the Energy Density and Stability of Ni-Rich Layered Cathode Materials With Multivalent Dopants via Machine Learning,” Chemical Engineering Journal 452 (2023): 139254.

[142]

X. Zhang, D. Mu, S. Lu, et al., “Ab Initio Design of Ni-Rich Cathode Material With Assistance of Machine Learning for High Energy Lithium-Ion Batteries,” Energy & Environmental Materials 7, no. 6 (2024): e12744.

[143]

Y. Hu, Y. Zhang, B. Wen, and F. Dai, “Grain Boundary Engineering in Nickel-Rich Cathode: A Combination of High-Throughput First-Principles and Interpretable Machine Learning Study,” Acta Materialia 276 (2024): 120144.

[144]

H. Zhang, H. Fu, X. He, et al., “Dramatically Enhanced Combination of Ultimate Tensile Strength and Electric Conductivity of Alloys via Machine Learning Screening,” Acta Materialia 200 (2020): 803-810.

[145]

J. Park, F. Sorourifar, M. Muthyala, et al., “Zero-Shot Discovery of High-Performance, Low-Cost Organic Battery Materials Using Machine Learning,” Journal of the American Chemical Society 146, no. 45 (2024): 31230-31239.

[146]

S. Denny, Z. Lin, W. Porter, N. Artrith, and J. Chen, “Machine Learning Prediction and Experimental Verification of Pt-Modified Nitride Catalysts for Ethanol Reforming With Reduced Precious Metal Loading,” Applied Catalysis B: Environmental 312 (2022): 121380.

[147]

X. Li, R. Chiong, Z. Hu, and A. Page, “Low-Cost Pt Alloys for Heterogeneous Catalysis Predicted by Density Functional Theory and Active Learning,” Journal of Physical Chemistry Letters 12, no. 30 (2021): 7305-7311.

[148]

E. Braconi and E. Godineau, “Bayesian Optimization as a Sustainable Strategy for Early-Stage Process Development? A Case Study of Cu-Catalyzed C-N Coupling of Sterically Hindered Pyrazines,” ACS Sustainable Chemistry & Engineering 11, no. 28 (2023): 10545-10554.

[149]

E. Ifandi, D. Lai, S. Kalaitzidis, et al., “Noble Metal Catalyst Detection in Rocks Using Machine-Learning: The Future to Low-Cost, Green Energy Materials?,” Scientific Reports 13, no. 1 (2023): 3765.

[150]

T. Williams, K. McCullough, and J. Lauterbach, “Enabling Catalyst Discovery Through Machine Learning and High-Throughput Experimentation,” Chemistry of Materials 32, no. 1 (2019): 157-165.

[151]

J. Im, S. Lee, T. Ko, H. Kim, Y. Hyon, and H. Chang, “Identifying Pb-Free Perovskites for Solar Cells by Machine Learning,” NPJ Computational Materials 5, no. 1 (2019): 37.

[152]

X. Cai, Y. Zhang, Z. Shi, et al., “Discovery of Lead-Free Perovskites for High-Performance Solar Cells via Machine Learning: Ultrabroadband Absorption, Low Radiative Combination, and Enhanced Thermal Conductivities,” Advanced Science 9, no. 4 (2022): 2103648.

[153]

Z. Gao, H. Zhang, G. Mao, et al., “Screening for Lead-Free Inorganic Double Perovskites With Suitable Band Gaps and High Stability Using Combined Machine Learning and DFT Calculation,” Applied Surface Science 568 (2021): 150916.

[154]

R. Yuan, Z. Liu, P. Balachandran, et al., “Accelerated Discovery of Large Electrostrains in BaTiO3-Based Piezoelectrics Using Active Learning,” Advanced Materials 30, no. 7 (2018): 1702884.

[155]

R. Yuan, Y. Tian, D. Xue, et al., “Accelerated Search for BaTiO3-Based Ceramics With Large Energy Storage at Low Fields Using Machine Learning and Experimental Design,” Advanced Science 6, no. 21 (2019): 1901395.

[156]

R. Yuan, A. Kumar, S. Zhuang, et al., “Machine Learning-Enabled Superior Energy Storage in Ferroelectric Films With a Slush-Like Polar State,” Nano Letters 23, no. 11 (2023): 4807-4814.

[157]

Q. Wei, B. Cao, H. Yuan, et al., “Divide and Conquer: Machine Learning Accelerated Design of Lead-Free Solder Alloys With High Strength and High Ductility,” NPJ Computational Materials 9, no. 1 (2023): 201.

[158]

B. Cao, T. Su, S. Yu, et al., “Active Learning Accelerates the Discovery of High Strength and High Ductility Lead-Free Solder Alloys,” Materials & Design 241 (2024): 112921.

[159]

J. Schnell, C. Nentwich, F. Endres, et al., “Data Mining in Lithium-Ion Battery Cell Production,” Journal of Power Sources 413 (2019): 360-366.

[160]

M. Niri, K. Liu, G. Apachitei, et al., “Machine Learning for Optimised and Clean Li-Ion Battery Manufacturing: Revealing the Dependency Between Electrode and Cell Characteristics,” Journal of Cleaner Production 324 (2021): 129272.

[161]

R. Cunha, T. Lombardo, E. Primo, and A. Franco, “Artificial Intelligence Investigation of NMC Cathode Manufacturing Parameters Interdependencies,” Batteries & Supercaps 3, no. 1 (2020): 60-67.

[162]

K. Liu, M. Niri, G. Apachitei, M. Lain, D. Greenwood, and J. Marco, “Interpretable Machine Learning for Battery Capacities Prediction and Coating Parameters Analysis,” Control Engineering Practice 124 (2022): 105202.

[163]

C. Kim, W. Won, and J. Kim, “Early-Stage Evaluation of Catalyst Using Machine Learning Based Modeling and Simulation of Catalytic Systems: Hydrogen Production via Water-Gas Shift over Pt Catalysts,” ACS Sustainable Chemistry & Engineering 10, no. 44 (2022): 14417-14432.

[164]

J. Li, L. Pan, M. Suvarna, and X. Wang, “Machine Learning Aided Supercritical Water Gasification for H2-Rich Syngas Production With Process Optimization and Catalyst Screening,” Chemical Engineering Journal 426 (2021): 131285.

[165]

Q. Wang, X. Liu, S. Tao, et al., “Machine Learning Study on Microwave-Assisted Batch Preparation and Oxygen Reduction Performance of Fe-N-C Catalysts,” Journal of Physical Chemistry Letters 14, no. 40 (2023): 9082-9089.

[166]

X. Chen, A. Shafizadeh, H. Shahbeik, et al., “Machine Learning-Based Optimization of Catalytic Hydrodeoxygenation of Biomass Pyrolysis Oil,” Journal of Cleaner Production 437 (2024): 140738.

[167]

N. Wang, H. He, Y. Wang, et al., “Machine Learning-Driven Optimization of Ni-Based Catalysts for Catalytic Steam Reforming of Biomass Tar,” Energy Conversion and Management 300 (2024): 117879.

[168]

B. Tang, Y. Lu, J. Zhou, et al., “Machine Learning-Guided Synthesis of Advanced Inorganic Materials,” Materials Today 41 (2020): 72-80.

[169]

H. Yang, R. Hu, H. Wu, et al., “Identification and Structural Characterization of Twisted Atomically Thin Bilayer Materials by Deep Learning,” Nano Letters 24, no. 9 (2024): 2789-2797.

[170]

R. Senanayake, X. Yao, C. Froehlich, et al., “Machine Learning-Assisted Carbon Dot Synthesis: Prediction of Emission Color and Wavelength,” Journal of Chemical Information and Modeling 62, no. 23 (2022): 5918-5928.

[171]

Y. Chen, C. Li, S. Liu, et al., “Deep-Learning-Enabled Fast Raman Identification of the Twist Angle of Bi-Layer Graphene,” Small (2025): 2411833.

[172]

E. Zhao, T. Wang, Y. Wang, et al., “Active Learning Assisted Piezoelectric Materials Synthesis on the Basis of Composite Decision-Making,” Med Mat 1, no. 2 (2024): 95-103.

[173]

D. E. Galvez-Aranda, T. L. Dinh, U. Vijay, F. M. Zanotto, and A. A. Franco, “Time-Dependent Deep Learning Manufacturing Process Model for Battery Electrode Microstructure Prediction,” Advanced Energy Materials 14, no. 15 (2024): 2400376.

[174]

M. Duquesnoy, C. Liu, V. Kumar, E. Ayerbe, and A. Franco, “Toward High-Performance Energy and Power Battery Cells With Machine Learning-Based Optimization of Electrode Manufacturing,” Journal of Power Sources 590 (2024): 233674.

[175]

Y. Wang, M. Klenner, A. Turetskyy, C. Herrmann, and S. Thiede, “Transfer Learning Framework and Use Cases for Battery Manufacturing Systems,” Procedia CIRP 130 (2024): 486-491.

[176]

B. Zhang, L. Merker, A. Sanin, and H. Stein, “Robotic Cell Assembly to Accelerate Battery Research,” Digital Discovery 1, no. 6 (2022): 755-762.

[177]

J. Yik, L. Zhang, J. Sjölund, et al., “Automated Electrolyte Formulation and Coin Cell Assembly for High-Throughput Lithium-Ion Battery Research,” Digital Discovery 2, no. 3 (2023): 799-808.

[178]

X. Li, L. Chen, G. Wei, C. Shang, and Z. Liu, “Sharp Increase in Catalytic Selectivity in Acetylene Semihydrogenation on Pd Achieved by a Machine Learning Simulation-Guided Experiment,” ACS Catalysis 10, no. 17 (2020): 9694-9705.

[179]

N. Lai, Y. Tew, X. Zhong, et al., “Artificial Intelligence (AI) Workflow for Catalyst Design and Optimization,” Industrial & Engineering Chemistry Research 62, no. 43 (2023): 17835-17848.

[180]

M. Perno, L. Hvam, and A. Haug, “A Machine Learning Digital Twin Approach for Critical Process Parameter Prediction in a Catalyst Manufacturing Line,” Computers in Industry 151 (2023): 103987.

[181]

G. Na, “Artificial Intelligence for Learning Material Synthesis Processes of Thermoelectric Materials,” Chemistry of Materials 35, no. 19 (2023): 8272-8280.

[182]

H. Yuan, R. Génois, E. Glais, et al., “Machine Learning Identification of Experimental Conditions for the Synthesis of Single-Phase White Phosphors,” Matter 4, no. 12 (2021): 3967-3976.

[183]

G. Tom, S. P. Schmid, S. G. Baird, et al., “Self-Driving Laboratories for Chemistry and Materials Science,” Chemical Reviews 124, no. 16 (2024): 9633-9732.

[184]

Y. Xie, K. Sattari, C. Zhang, and J. Lin, “Toward Autonomous Laboratories: Convergence of Artificial Intelligence and Experimental Automation,” Progress in Materials Science 132 (2023): 101043.

[185]

A. Dave, J. Mitchell, S. Burke, H. Lin, J. Whitacre, and V. Viswanathan, “Autonomous Optimization of Nonaqueous Battery Electrolytes Via Robotic Experimentation and Machine Learning,” Nature Communications 13, no. 1 (2022): 5454.

[186]

S. Matsuda, G. Lambard, and K. Sodeyama, “Data-Driven Automated Robotic Experiments Accelerate Discovery of Multi-Component Electrolyte for Rechargeable Li-O2 Batteries,” Cell Reports Physical Science 3, no. 4 (2022): 100832.

[187]

J. Chen, S. Cross, L. Miara, J. Cho, Y. Wang, and W. Sun, “Navigating Phase Diagram Complexity to Guide Robotic Inorganic Materials Synthesis,” Nature Synthesis 3 (2024): 606-614.

[188]

P. Svensson, P. Yushmanov, A. Tot, L. Kloo, E. Berg, and K. Edström, “Robotised Screening and Characterisation for Accelerated Discovery of Novel Lithium-Ion Battery Electrolytes: Building a Platform and Proof of Principle Studies,” Chemical Engineering Journal 455 (2023): 140955.

[189]

J. Yik, C. Hvarfner, J. Sjölund, E. Berg, and L. Zhang, “Towards Self-Driving Labs for Better Batteries: Accelerating Electrolyte Discovery with Automation and Bayesian Optimization,” Preprint, submitted in 2024, https://doi.org/10.26434/chemrxiv-2024-mqb6s.

[190]

F. Rahmanian, S. Fuchs, B. Zhang, M. Fichtner, and H. Stein, “Autonomous Millimeter Scale High Throughput Battery Research System,” Digital Discovery 3, no. 5 (2024): 883-895.

[191]

I. Oh, M. Pence, N. Lukhanin, O. Rodríguez, C. Schroeder, and J. Rodríguez-López, “The Electrolab: An Open-Source, Modular Platform for Automated Characterization of Redox-Active Electrolytes,” Device 1, no. 5 (2023): 100103.

[192]

B. Burger, P. M. Maffettone, V. V. Gusev, et al., “A Mobile Robotic Chemist,” Nature 583, no. 7815 (2020): 237-241.

[193]

E. Fatehi, M. Thadani, G. Birsan, and R. Black, “A Critical Evaluation of a Self-Driving Laboratory for the Optimization of Electrodeposited Earth-Abundant Mixed-Metal Oxide Catalysts for the Oxygen Evolution Reaction (OER),” Preprint, submitted in 2023, https://doi.org/10.48550/arXiv.2305.12541.

[194]

Q. Zhu, Y. Huang, D. Zhou, et al., “Automated Synthesis of Oxygen-Producing Catalysts From Martian Meteorites by a Robotic AI Chemist,” Nature Synthesis 3, no. 3 (2024): 319-328.

[195]

J. Li, Y. Lu, Y. Xu, et al., “AIR-Chem: Authentic Intelligent Robotics for Chemistry,” Journal of Physical Chemistry A 122, no. 46 (2018): 9142-9148.

[196]

J. Li, J. Li, R. Liu, et al., “Autonomous Discovery of Optically Active Chiral Inorganic Perovskite Nanocrystals Through an Intelligent Cloud Lab,” Nature Communications 11, no. 1 (2020): 2046.

[197]

Y. Jiang, D. Salley, A. Sharma, G. Keenan, M. Mullin, and L. Cronin, “An Artificial Intelligence Enabled Chemical Synthesis Robot for Exploration and Optimization of Nanomaterials,” Science Advances 8, no. 40 (2022): eabo2626.

[198]

H. Zhao, W. Chen, H. Huang, et al., “A Robotic Platform for the Synthesis of Colloidal Nanocrystals,” Nature Synthesis 2, no. 6 (2023): 505-514.

[199]

M. Politi, F. Baum, K. Vaddi, et al., “A High-Throughput Workflow for the Synthesis of CdSe Nanocrystals Using a Sonochemical Materials Acceleration Platform,” Digital Discovery 2, no. 4 (2023): 1042-1057.

[200]

S. Langner, F. Häse, J. D. Perea, et al., “Beyond Ternary OPV: High-Throughput Experimentation and Self-Driving Laboratories Optimize Multicomponent Systems,” Advanced Materials 32, no. 14 (2020): 1907801.

[201]

Z. Liu, N. Rolston, A. Flick, et al., “Machine Learning With Knowledge Constraints for Process Optimization of Open-Air Perovskite Solar Cell Manufacturing,” Joule 6, no. 4 (2022): 834-849.

[202]

F. Häse, L. M. Roch, C. Kreisbeck, and A. Aspuru-Guzik, “Phoenics: A Bayesian Optimizer for Chemistry,” ACS Central Science 4, no. 9 (2018): 1134-1145.

[203]

B. P. MacLeod, F. G. L. Parlane, T. D. Morrissey, et al., “Self-Driving Laboratory for Accelerated Discovery of Thin-Film Materials,” Science Advances 6, no. 20 (2020): eaaz8867.

[204]

R. Hickman, M. Aldeghi, and A. Aspuru-Guzik, “Anubis: Bayesian Optimization With Unknown Feasibility Constraints for Scientific Experimentation,” Digital Discovery 4, no. 8 (2025): 2104-2122.

[205]

T. Osterrieder, F. Schmitt, L. Lüer, et al., “Autonomous Optimization of an Organic Solar Cell in a 4-Dimensional Parameter Space,” Energy & Environmental Science 16, no. 9 (2023): 3984-3993.

[206]

J. Wu, L. Torresi, M. Hu, et al., “Inverse Design Workflow Discovers Hole-Transport Materials Tailored for Perovskite Solar Cells,” Science 386, no. 6727 (2024): 1256-1264.

[207]

F. Strieth-Kalthoff, H. Hao, V. Rathore, et al., “Delocalized, Asynchronous, Closed-Loop Discovery of Organic Laser Emitters,” Science 384, no. 6697 (2023): eadk9227.

[208]

A. Gongora, B. Xu, W. Perry, et al., “A Bayesian Experimental Autonomous Researcher for Mechanical Design,” Science Advances 6, no. 15 (2020): eaaz1708.

[209]

K. Snapp, B. Verdier, A. Gongora, et al., “Superlative Mechanical Energy Absorbing Efficiency Discovered Through Self-Driving Lab-Human Partnership,” Nature Communications 15, no. 1 (2024): 4290.

[210]

T. Erps, M. Foshey, M. Luković, et al., “Accelerated Discovery of 3D Printing Materials Using Data-Driven Multiobjective Optimization,” Science Advances 7, no. 42 (2021): eabf7435.

[211]

J. Deneault, J. Chang, J. Myung, et al., “Toward Autonomous Additive Manufacturing: Bayesian Optimization on a 3D Printer,” MRS Bulletin 46 (2021): 566-575.

[212]

A. Dave, J. Mitchell, S. Burke, H. Lin, J. Whitacre, and V. Viswanathan, “Autonomous Optimization of Non-Aqueous Li-Ion Battery Electrolytes via Robotic Experimentation and Machine Learning Coupling,” Nature Communications 13, no. 1 (2022): 5454.

[213]

K. Williams, E. Bilsland, A. Sparkes, et al., “Cheaper Faster Drug Development Validated by the Repositioning of Drugs Against Neglected Tropical Diseases,” Journal of the Royal Society Interface 12, no. 104 (2015): 20141289.

[214]

C. W. Coley, D. A. Thomas, J. A. M. Lummiss, et al., “A Robotic Platform for Flow Synthesis of Organic Compounds Informed by AI Planning,” Science 365, no. 6453 (2019): eaax1566.

[215]

P. Nikolaev, D. Hooper, F. Webber, et al., “Autonomy in Materials Research: A Case Study in Carbon Nanotube Growth,” NPJ Computational Materials 2, no. 1 (2016): 1-6.

[216]

A. Bédard, A. Adamo, K. Aroh, et al., “Reconfigurable System for Automated Optimization of Diverse Chemical Reactions,” Science 361, no. 6408 (2018): 1220-1225.

[217]

J. Granda, L. Donina, V. Dragone, D. Long, and L. Cronin, “Controlling an Organic Synthesis Robot With Machine Learning to Search for New Reactivity,” Nature 559, no. 7714 (2018): 377-381.

[218]

J. Grizou, L. Points, A. Sharma, and L. Cronin, “A Curious Formulation Robot Enables the Discovery of a Novel Protocell Behavior,” Science Advances 6, no. 5 (2020): eaay4237.

[219]

Y. Xie, C. Zhang, H. Deng, et al., “Accelerate Synthesis of Metal-Organic Frameworks by a Robotic Platform and Bayesian Optimization,” ACS Applied Materials & Interfaces 13, no. 45 (2021): 53485-53491.

[220]

J. Manzano, W. Hou, S. Zalesskiy, et al., “An Autonomous Portable Platform for Universal Chemical Synthesis,” Nature Chemistry 14, no. 11 (2022): 1311-1318.

[221]

M. Flores-Ortiz, R. Gutiérrez-Márquez, R. Mier-Jiménez, M. Flores-Leonar, and A. Granda, Building CC Bonds Using a Cheap Automated Synthesis Platform (ChemRxiv, 2023).

[222]

T. Dai, S. Vijayakrishnan, F. Szczypiński, et al., “Autonomous Mobile Robots for Exploratory Synthetic Chemistry,” Nature 635 (2024): 890-897.

[223]

H. Sheng, J. Sun, O. Rodríguez, et al., “Autonomous Closed-Loop Mechanistic Investigation of Molecular Electrochemistry via Automation,” Nature Communications 15, no. 1 (2024): 2781.

[224]

N. Szymanski, Y. Zeng, H. Huo, C. Bartel, H. Kim, and G. Ceder, “Toward Autonomous Design and Synthesis of Novel Inorganic Materials,” Materials Horizons 8, no. 8 (2021): 2169-2198.

[225]

B. P. MacLeod, F. G. L. Parlane, C. C. Rupnow, et al., “A Self-Driving Laboratory Advances the Pareto Front for Material Properties,” Nature Communications 13, no. 1 (2022): 995.

[226]

M. Rooney, B. MacLeod, R. Oldford, et al., “A Self-Driving Laboratory Designed to Accelerate the Discovery of Adhesive Materials,” Digital Discovery 1, no. 4 (2022): 382-389.

[227]

Z. Ni, Y. Li, K. Hu, et al., “MatPilot: An LLM-Enabled AI Materials Scientist Under the Framework of Human-Machine Collaboration,” arXiv (2024).

[228]

B. Cui, H. Wang, R. Li, et al., “Internal Short Circuit Early Detection of Lithium-Ion Batteries From Impedance Spectroscopy Using Deep Learning,” Journal of Power Sources 563 (2023): 232824.

[229]

Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, “Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery,” Journal of Power Sources 208 (2012): 210-224.

[230]

Y. Huang, D. Perlmutter, A. Fei-Huei Su, et al., “Detecting Lithium Plating Dynamics in a Solid-State Battery With Operando X-Ray Computed Tomography Using Machine Learning,” NPJ Computational Materials 9, no. 1 (2023): 93.

[231]

H. Wang, Y. Song, X. Sun, S. Mo, C. Chen, and J. Wang, “Onboard In-Situ Warning and Detection of Li Plating for Fast-Charging Batteries With Deep Learning,” Energy Storage Materials 71 (2024): 103585.

[232]

J. Thomas, H. Crasta, K. Kausthubha, C. Gowda, and A. Rao, “Battery Monitoring System Using Machine Learning,” Journal of Energy Storage 40 (2021): 102741.

[233]

A. Unagar, Y. Tian, M. Chao, and O. Fink, “Learning to Calibrate Battery Models in Real-Time With Deep Reinforcement Learning,” Energies 14, no. 5 (2021): 1361.

[234]

G. Ma, S. Xu, B. Jiang, et al., “Real-Time Personalized Health Status Prediction of Lithium-Ion Batteries Using Deep Transfer Learning,” Energy & Environmental Science 15, no. 10 (2022): 4083-4094.

[235]

L. Tian, C. Dong, Y. Mu, X. Yu, and H. Jia, “Online Lithium-Ion Battery Intelligent Perception for Thermal Fault Detection and Localization,” Heliyon 10, no. 4 (2024): e25298.

[236]

B. Jiang, W. E. Gent, F. Mohr, et al., “Bayesian Learning for Rapid Prediction of Lithium-Ion Battery-Cycling Protocols,” Joule 5, no. 12 (2021): 3187-3203.

[237]

G. Huang, P. Zhao, and G. Zhang, “Real-Time Battery Thermal Management for Electric Vehicles Based on Deep Reinforcement Learning,” IEEE Internet of Things Journal 9, no. 15 (2022): 14060-14072.

[238]

H. Cheng, S. Jung, and Y. Kim, “Battery Thermal Management System Optimization Using Deep Reinforced Learning Algorithm,” Applied Thermal Engineering 236 (2024): 121759.

[239]

P. Li, Z. Wei, K. Wu, J. Hu, Y. Yu, and H. He, “Embedded Sensing-Enabled Distributed Thermal Modeling and Nondestructive Thermal Monitoring of Lithium-Ion Battery,” IEEE Transactions on Transportation Electrification 10, no. 3 (2023): 7019-7028.

[240]

A. Arif, V. Reddy, K. Srividya, and U. Mallampalli, “Utilizing Multilayer Perceptron for Machine Learning Diagnosis in Phase Change Material-Based Thermal Management Systems,” Heat Transfer 53, no. 8 (2024): 4922-4947.

[241]

Z. Khadem, A. Salari, A. Naghdbishi, H. Shakibi, and M. Sardarabadi, “Parametric Analysis of a PCM-Based Heat Sink for Electronic Device Thermal Management,” Journal of Energy Storage 74 (2023): 109118.

[242]

H. Najafi Khaboshan, F. Jaliliantabar, A. A. Abdullah, S. Panchal, and A. Azarinia, “Parametric Investigation of Battery Thermal Management System With Phase Change Material, Metal Foam, and Fins; Utilizing CFD and ANN Models,” Applied Thermal Engineering 247 (2024): 123080.

[243]

D. Bhamare, P. Saikia, M. Rathod, D. Rakshit, and J. Banerjee, “A Machine Learning and Deep Learning Based Approach to Predict the Thermal Performance of Phase Change Material Integrated Building Envelope,” Building and Environment 199 (2021): 107927.

[244]

X. Xiao, Q. Hu, H. Jiao, Y. Wang, and A. Badiei, “Simulation and Machine Learning Investigation on Thermoregulation Performance of Phase Change Walls,” Sustainability 15, no. 14 (2023): 11365.

[245]

G. Anooj, G. Marri, and C. Balaji, “A Machine Learning Methodology for the Diagnosis of Phase Change Material-Based Thermal Management Systems,” Applied Thermal Engineering 222 (2023): 119864.

[246]

G. Amudhalapalli and J. Devanuri, “Prediction of Transient Melt Fraction in Metal Foam-Nanoparticle Enhanced PCM Hybrid Shell and Tube Heat Exchanger: A Machine Learning Approach,” Thermal Science and Engineering Progress 46 (2023): 102241.

[247]

Z. Nozarijouybari and H. Fathy, “Machine Learning for Battery Systems Applications: Progress, Challenges, and Opportunities,” Journal of Power Sources 601 (2024): 234272.

[248]

M. Ng, J. Zhao, Q. Yan, G. Conduit, and Z. Seh, “Predicting the State of Charge and Health of Batteries Using Data-Driven Machine Learning,” Nature Machine Intelligence 2, no. 3 (2020): 161-170.

[249]

J. Zhu, Y. Wang, Y. Huang, et al., “Data-Driven Capacity Estimation of Commercial Lithium-Ion Batteries From Voltage Relaxation,” Nature Communications 13, no. 1 (2022): 2261.

[250]

Y. Zhang, Q. Tang, Y. Zhang, J. Wang, U. Stimming, and A. Lee, “Identifying Degradation Patterns of Lithium Ion Batteries From Impedance Spectroscopy Using Machine Learning,” Nature Communications 11, no. 1 (2020): 1706.

[251]

K. A. Severson, P. M. Attia, N. Jin, et al., “Data-Driven Prediction of Battery Cycle Life Before Capacity Degradation,” Nature Energy 4, no. 5 (2019): 383-391.

[252]

K. Schofer, F. Laufer, J. Stadler, et al., “Machine Learning-Based Lifetime Prediction of Lithium-Ion Cells,” Advanced Science 9, no. 29 (2022): 2200630.

[253]

F. Wang, Z. Zhai, Z. Zhao, Y. Di, and X. Chen, “Physics-Informed Neural Network for Lithium-Ion Battery Degradation Stable Modeling and Prognosis,” Nature Communications 15, no. 1 (2024): 4332.

[254]

R. Zhu, W. Peng, Z. Ye, and M. Xie, “Collaborative Prognostics of Lithium-Ion Batteries Using Federated Learning With Dynamic Weighting and Attention Mechanism,” IEEE Transactions on Industrial Electronics 72, no. 1 (2024): 980-991.

[255]

H. Zhang, Y. Li, S. Zheng, et al., “Battery Lifetime Prediction Across Diverse Ageing Conditions With Inter-Cell Deep Learning,” Nature Machine Intelligence 7 (2025): 270-277.

[256]

S. Chen, Z. Gong, P. Zhao, et al., “Design of Nanostructure in Solid Electrolyte Interphase for Enhancing the Mechanical Durability of Lithium Metal Anode by Deep-Learning Approach,” Energy Storage Materials 65 (2024): 103096.

[257]

C. Chen, X. Lin, X. Wu, et al., “Machine Learning Assisted Stability Analysis of Blue Quantum Dot Light-Emitting Diodes,” Nano Letters 23, no. 12 (2023): 5738-5745.

[258]

M. Ibrahim, J. Fan, W. Yung, et al., “Machine Learning and Digital Twin Driven Diagnostics and Prognostics of Light-Emitting Diodes,” Laser & Photonics Reviews 14, no. 12 (2020): 2000254.

[259]

K. Lu, W. Zhang, and B. Sun, “Multidimensional Data-Driven Life Prediction Method for White LEDs Based on BP-NN and Improved-Adaboost Algorithm,” IEEE Access 5 (2017): 21660-21668.

[260]

M. Chang, C. Chen, D. Das, and M. Pecht, “Anomaly Detection of Light-Emitting Diodes Using the Similarity-Based Metric Test,” IEEE Transactions on Industrial Informatics 10, no. 3 (2014): 1852-1863.

[261]

W. Dunlap-Shohl, Y. Meng, P. Sunkari, D. Beck, M. Meilă, and H. Hillhouse, “Physiochemical Machine Learning Models Predict Operational Lifetimes of CH 3 NH 3 PbI 3 Perovskite Solar Cells,” Journal of Materials Chemistry A 12, no. 16 (2024): 9730-9746.

[262]

L. Zhang, F. Lu, G. Tao, et al., Prediction of Operational Lifetime of Perovskite Light Emitting Diodes by Machine Learning (Advanced Intelligent Systems, 2024).

[263]

K. Ji, W. Lin, Y. Sun, et al., “Self-Supervised Deep Learning for Tracking Degradation of Perovskite Light-Emitting Diodes With Multispectral Imaging,” Nature Machine Intelligence 5, no. 11 (2023): 1225-1235.

[264]

L. Bui, M. Joswiak, I. Castillo, A. Phillips, J. Yang, and D. Hickman, “A Hybrid Modeling Approach for Catalyst Monitoring and Lifetime Prediction,” ACS Engineering Au 2, no. 1 (2021): 17-26.

[265]

M. Bogojeski, S. Sauer, F. Horn, and K. Müller, “Forecasting Industrial Aging Processes With Machine Learning Methods,” Computers & Chemical Engineering 144 (2021): 107123.

[266]

C. Ling, “A Review of the Recent Progress in Battery Informatics,” NPJ Computational Materials 8, no. 1 (2022): 33.

[267]

C. Lin, J. Xu, D. Jiang, et al., “Multi-Model Ensemble Learning for Battery State-of-Health Estimation: Recent Advances and Perspectives,” Journal of Energy Chemistry 100 (2024): 739-759.

[268]

B. Niu, X. Wang, and Z. Xu, “Application of Machine Learning to Guide Efficient Metal Leaching From Spent Lithium-ion Batteries and Comprehensively Reveal the Process Parameter Influences,” Journal of Cleaner Production 410 (2023): 137188.

[269]

J. Priyadarshini, M. Elangovan, M. Mahdal, and M. Jayasudha, “Machine-Learning-Assisted Prediction of Maximum Metal Recovery From Spent Zinc-Manganese Batteries,” Processes 10, no. 5 (2022): 1034.

[270]

X. Lai, C. Deng, J. Li, Z. Zhu, X. Han, and Y. Zheng, “Rapid Sorting and Regrouping of Retired Lithium-Ion Battery Modules for Echelon Utilization Based on Partial Charging Curves,” IEEE Transactions on Vehicular Technology 70, no. 2 (2021): 1246-1254.

[271]

Y. Lu, M. Maftouni, T. Yang, et al., “A Novel Disassembly Process of End-of-Life Lithium-Ion Batteries Enhanced by Online Sensing and Machine Learning Techniques,” Journal of Intelligent Manufacturing 34, no. 5 (2023): 2463-2475.

[272]

C. Sprague, V. de la Asunción-Nadal, and A. García-Fernández, Implementing AI in Advanced Recycling of Perovskite Solar Cells, 2024 9th International Conference on Smart and Sustainable Technologies (SpliTech) (IEEE, 2024), 1-4.

[273]

Y. Liu and Z. Xu, “Potential Prediction and Coupling Relationship Revealing for Recovery of Platinum Group Metals From Spent Auto-Exhaust Catalysts Based on Machine Learning,” Journal of Environmental Management 365 (2024): 121533.

[274]

B. Niu, S. E, X. Wang, Z. Xu, and Y. Qin, “Intelligent Leaching Rare Earth Elements From Waste Fluorescent Lamps,” Proceedings of the National Academy of Sciences 121, no. 1 (2024): e2308502120.

[275]

T. Liu, K. Johnson, S. Jansone-Popova, and D. Jiang, “Advancing Rare-Earth Separation by Machine Learning,” JACS Au 2, no. 6 (2022): 1428-1434.

[276]

A. Bashiri, M. Habibi, A. Sufali, S. Shekarsokhan, R. Maleki, and A. Razmjou, “Artificial Intelligence Models for Efficiency Estimation of Adsorbents in Rare-Earth Element Recovery Based on Feature Engineering,” Industrial & Engineering Chemistry Research 63, no. 42 (2024): 17930-17948.

[277]

B. Carrera, J. Mata, V. Piñol, and K. Kim, “Environmental Sustainability: A Machine Learning Approach for Cost Analysis in Plastic Recycling Classification,” Resources, Conservation and Recycling 197 (2023): 107095.

[278]

X. Lai, Y. Huang, C. Deng, et al., “Sorting, Regrouping, and Echelon Utilization of the Large-Scale Retired Lithium Batteries: A Critical Review,” Renewable and Sustainable Energy Reviews 146 (2021): 111162.

[279]

K. Liu, Y. Wang, X. Lai, K. Liu, Y. Wang, and X. Lai, “Key Stages for Battery Full-Lifespan Management,” in Data Science-Based Full-Lifespan Management of Lithium-Ion Battery: Manufacturing, Operation and Reutilization (Springer, 2022), 27-47.

[280]

D. Conor Griffin, J. Mateos-Garcia, H. Schieve, and P. Kohli, Google DeepMind: A New Golden Age of Discovery, London: DeepMind, 2024, https://storage.googleapis.com/deepmind-media/DeepMind.com/Assets/Docs/a-new-golden-age-of-discovery_nov-2024.pdf.

[281]

Y. Jia, Y. Xian, Y. Xu, et al., “Universal Semantic Embeddings of Chemical Elements for Enhanced Materials Inference and Discovery,” Preprint, submitted in 2025, https://doi.org/10.48550/arXiv.2502.14912.

[282]

J. Wei, X. Wang, D. Schuurmans, et al., “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,” Advances in Neural Information Processing Systems 35 (2022): 24824-24837.

[283]

C. Li, X. Han, C. Yao, et al., “A Novel Training-Free Approach to Efficiently Extracting Material Microstructures via Visual Large Model,” Acta Materialia 290 (2025): 120962.

[284]

L. Kaack, P. Donti, E. Strubell, G. Kamiya, F. Creutzig, and D. Rolnick, “Aligning Artificial Intelligence With Climate Change Mitigation,” Nature Climate Change 12, no. 6 (2022): 518-527.

[285]

P. Jiang, C. Sonne, W. Li, F. You, and S. You, “Preventing the Immense Increase in the Life-Cycle Energy and Carbon Footprints of Llm-Powered Intelligent Chatbots,” Engineering 40 (2024): 202-210.

[286]

R. Verdecchia, J. Sallou, and L. Cruz, “A Systematic Review of Green AI,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 13, no. 4 (2023): e1507.

RIGHTS & PERMISSIONS

2025 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/