Ionogel-Dominated Wearable Sensors for Reliable Health Monitoring

Wenzhe Xiao , Ting He , Xinyue Cui , Jing Wang , Yingqi Zhang , Weidong Zhao , Jipeng Yan , Jian Sun

SusMat ›› 2025, Vol. 5 ›› Issue (4) : e70026

PDF
SusMat ›› 2025, Vol. 5 ›› Issue (4) : e70026 DOI: 10.1002/sus2.70026
REVIEW

Ionogel-Dominated Wearable Sensors for Reliable Health Monitoring

Author information +
History +
PDF

Abstract

Ionogels have garnered significant attention in soft electronics, sensors, and biomedicine due to their combination of flexibility, thermal stability, and ionic conductivity. Nonetheless, challenges associated with designing ionogels with reliable properties for health monitoring scenarios still remain. This review offers a novel perspective on the development of wearable sensors for health monitoring by comprehensively examining ionogel synthesis methodologies, highlighting critical performance parameters, and exploring underexplored applications. First, the design principles governing polymer network optimization and advanced manufacturing techniques for ionogels are elucidated. Then, the strategies for enhancing critical performance are discussed, followed by an exploration of specific application scenarios, including noninvasive biochemical analysis, real-time motion monitoring, and disease-specific assessments. Finally, an outlook on future challenges and opportunities in the emerging field of ionogels is provided. The establishment of a hierarchical health monitoring framework that integrates molecular-, individual-, and systemic-level perspectives offers readers a unique and in-depth understanding, which advances the comprehension of this emerging field.

Keywords

health monitoring / ionogels / ionic liquids / wearable sensors

Cite this article

Download citation ▾
Wenzhe Xiao, Ting He, Xinyue Cui, Jing Wang, Yingqi Zhang, Weidong Zhao, Jipeng Yan, Jian Sun. Ionogel-Dominated Wearable Sensors for Reliable Health Monitoring. SusMat, 2025, 5(4): e70026 DOI:10.1002/sus2.70026

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Abdigazy, M. Arfan, G. Lazzi, et al., “End-to-End Design of Ingestible Electronics,” Nature Electronics 7, no. 2 (2024): 102-118.

[2]

S. Gong, Y. Lu, J. Yin, A. Levin, and W. Cheng, “Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare,” Chemical Reviews 124, no. 2 (2024): 455-553.

[3]

H. Tang, Y. Yang, Z. Liu, et al., “Injectable Ultrasonic Sensor for Wireless Monitoring of Intracranial Signals,” Nature 630, no. 8015 (2024): 84-90.

[4]

C. Zhao, J. Park, S. E. Root, and Z. Bao, “Skin-Inspired Soft Bioelectronic Materials, Devices and Systems,” Nature Reviews Bioengineering 2, no. 8 (2024): 671-690.

[5]

J. C. Yang, J. Mun, S. Y. Kwon, et al., “Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics,” Advanced Materials 31, no. 48 (2019): 1904765.

[6]

F. Han, T. Wang, G. Liu, et al., “Materials With Tunable Optical Properties for Wearable Epidermal Sensing in Health Monitoring,” Advanced Materials 34, no. 26 (2022): 2109055.

[7]

S. M. A. Iqbal, I. Mahgoub, E. Du, M. A. Leavitt, and W. Asghar, “Advances in Healthcare Wearable Devices,” Npj Flexible Electronics 5, no. 1 (2021): 9.

[8]

Y. Zhao, K. Q. Jin, J. D. Li, et al., “Flexible and Stretchable Electrochemical Sensors for Biological Monitoring,” Advanced Materials (2023): 2305917.

[9]

K. Zeng, X. Shi, C. Tang, T. Liu, and H. Peng, “Design, Fabrication and Assembly Considerations for Electronic Systems Made of Fibre Devices,” Nature Reviews Materials 8, no. 8 (2023): 552-561.

[10]

Z. Zhang, Y. Wang, S. Jia, and C. Fan, “Body-Conformable Light-Emitting Materials and Devices,” Nature Photonics 18, no. 2 (2023): 114-126.

[11]

Z. Zhang, Z. Zhu, P. Zhou, et al., “Soft Bioelectronics for Therapeutics,” ACS Nano 17, no. 18 (2023): 17634-17667.

[12]

M. Wang, Y. Yang, J. Min, et al., “A Wearable Electrochemical Biosensor for the Monitoring of Metabolites and Nutrients,” Nature Biomedical Engineering 6, no. 11 (2022): 1225-1235.

[13]

N. Brasier, J. R. Sempionatto, S. Bourke, et al., “Towards on-Skin Analysis of Sweat for Managing Disorders of Substance Abuse,” Nature Biomedical Engineering 8, no. 8 (2024): 925-929.

[14]

W. Gao, S. Emaminejad, H. Y. Y. Nyein, et al., “Fully Integrated Wearable Sensor Arrays for Multiplexed In Situ Perspiration Analysis,” Nature 529, no. 7587 (2016): 509-514.

[15]

J. Zou, X. Jing, Z. Chen, et al., “Multifunctional Organohydrogel With Ultralow-Hysteresis, Ultrafast-Response, and Whole-Strain-Range Linearity for Self-Powered Sensors,” Advanced Functional Materials 33, no. 15 (2023): 2213895.

[16]

Y. Cheng, K. Wang, H. Xu, et al., “Recent Developments in Sensors for Wearable Device Applications,” Analytical and Bioanalytical Chemistry 413, no. 24 (2021): 6037-6057.

[17]

L. Hu, P. L. Chee, S. Sugiarto, et al., “Hydrogel-Based Flexible Electronics,” Advanced Materials 35, no. 14 (2023): 2205326.

[18]

H. Yuk, J. Wu, and X. Zhao, “Hydrogel Interfaces for Merging Humans and Machines,” Nature Reviews Materials 7, no. 12 (2022): 935-952.

[19]

Y. Zhang, Y. Tan, J. Lao, H. Gao, and J. Yu, “Hydrogels for Flexible Electronics,” ACS Nano 17, no. 11 (2023): 9681-9693.

[20]

P. C. Marr and A. C. Marr, “Ionic Liquid Gel Materials: Applications in Green and Sustainable Chemistry,” Green Chemistry 18, no. 1 (2016): 105-128.

[21]

X. Fan, S. Liu, Z. Jia, et al., “Ionogels: Recent Advances in Design, Material Properties and Emerging Biomedical Applications,” Chemical Society Reviews 52, no. 7 (2023): 2497-2527.

[22]

Y. Hu, Y. Xing, H. Yue, et al., “Ionic Liquids Revolutionizing Biomedicine: Recent Advances and Emerging Opportunities,” Chemical Society Reviews 52, no. 20 (2023): 7262-7293.

[23]

Q. Li, F. Yan, and J. Texter, “Polymerized and Colloidal Ionic Liquids Horizontal Line Syntheses and Applications,” Chemical Reviews 124, no. 7 (2024): 3813-3931.

[24]

J. Dupont, B. C. Leal, P. Lozano, et al., “Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis,” Chemical Reviews 124, no. 9 (2024): 5227-5420.

[25]

W. Li, W. Xiao, Q. Luo, et al., “Ionic Liquids Promoted Synthesis, Enhanced Functions, and Expanded Applications of Porous Organic Frameworks,” Coordination Chemistry Reviews 493 (2023): 215304.

[26]

B. He, S. Zhong, K. Li, et al., “Ionic Liquids: The Emerging “Cardiotonic” for Photocatalytic Materials,” Coordination Chemistry Reviews 529 (2025): 216461.

[27]

C. C. Yan, W. Li, Z. Liu, et al., “Ionogels: Preparation, Properties and Applications,” Advanced Functional Materials 34, no. 17 (2023): 2314408.

[28]

M. Wang, J. Hu, and M. D. Dickey, “Tough Ionogels: Synthesis, Toughening Mechanisms, and Mechanical Properties—A Perspective,” JACS Au 2, no. 12 (2022): 2645-2657.

[29]

M. Wang, X. Xiao, S. Siddika, et al., “Glassy Gels Toughened by Solvent,” Nature 631, no. 8020 (2024): 313-318.

[30]

J. Cui, Y. Li, D. Chen, T. G. Zhan, and K. D. Zhang, “Ionic Liquid-Based Stimuli-Responsive Functional Materials,” Advanced Functional Materials 30, no. 50 (2020): 2005522.

[31]

Z. Luo, W. Li, J. Yan, and J. Sun, “Roles of Ionic Liquids in Adjusting Nature of Ionogels: A Mini Review,” Advanced Functional Materials 32, no. 32 (2022): 2203988.

[32]

M. A. B. H. Susan, T. Kaneko, A. Noda, and M. Watanabe, “Ion Gels Prepared by In Situ Radical Polymerization of Vinyl Monomers in an Ionic Liquid and Their Characterization as Polymer Electrolytes,” Journal of the American Chemical Society 127, no. 13 (2005): 4976-4983.

[33]

X. Zhou, Y. Zhou, L. Yu, et al., “Gel Polymer Electrolytes for Rechargeable Batteries Toward Wide-Temperature Applications,” Chemical Society Reviews 53, no. 10 (2024): 5291-5337.

[34]

G. Ge, K. Mandal, R. Haghniaz, et al., “Deep Eutectic Solvents-Based Ionogels With Ultrafast Gelation and High Adhesion in Harsh Environments,” Advanced Functional Materials 33, no. 9 (2023): 2207388.

[35]

H. T. Imam, K. Hill, A. Reid, et al., “Supramolecular Ionic Liquid Gels for Enzyme Entrapment,” ACS Sustainable Chemistry & Engineering 11 (2023): 6829-6837.

[36]

Y. Zhou, B. Wang, Z. Ling, et al., “Advances in Ionogels for Proton-Exchange Membranes,” Science of the Total Environment 921 (2024): 171099.

[37]

Y. Ma, Y. Wang, J. Zhou, et al., “LCST Ion Gels Fabricating “All-in-One” Smart Windows: Thermotropic, Electrochromic and Power-Generating,” Materials Horizons 11, no. 16 (2024): 3825-3834.

[38]

L. C. Tome, L. Porcarelli, J. E. Bara, M. Forsyth, and D. Mecerreyes, “Emerging Iongel Materials Towards Applications in Energy and Bioelectronics,” Materials Horizons 8, no. 12 (2021): 3239-3265.

[39]

C. Hopson, M. M. Villar-Chavero, J. C. Dominguez, et al., “Cellulose Ionogels, a Perspective of the Last Decade: A Review,” Carbohydrate Polymers 274 (2021): 118663.

[40]

A. Wu, F. Lu, P. Sun, et al., “Low-Molecular-Weight Supramolecular Ionogel Based on Host-Guest Interaction,” Langmuir 33, no. 49 (2017): 13982-13989.

[41]

P. Ratajczak and F. Béguin, “Ionogels With Carbon and Organic Polymer Matrices for Electrochemical Systems,” Advanced Sustainable Systems 8, no. 11 (2024): 2400340.

[42]

Q. Lyu, S. Wang, B. Peng, et al., “Bioinspired Photonic Ionogels as Interactively Visual Ionic Skin With Optical and Electrical Synergy,” Small 17, no. 41 (2021): 2103271.

[43]

J. B. Ocreto, W.-H. Chen, A. P. Rollon, et al., “Ionic Liquid Dissolution Utilized for Biomass Conversion Into Biofuels, Value-Added Chemicals and Advanced Materials: A Comprehensive Review,” Chemical Engineering Journal 445 (2022): 136733.

[44]

T. He, J. Yan, W. Xiao, and J. Sun, “Latest Advances in Ionic Liquids Promoted Synthesis and Application of Advanced Biomass Materials,” Frontiers of Chemical Science and Engineering 17, no. 7 (2023): 798-816.

[45]

N. Dissanayake, V. D. Thalangamaarachchige, S. Troxell, E. L. Quitevis, and N. Abidi, “Substituent Effects on Cellulose Dissolution in Imidazolium-Based Ionic Liquids,” Cellulose 25, no. 12 (2018): 6887-6900.

[46]

Y. Zhou, X. Zhang, D. Yin, et al., “The Solution State and Dissolution Process of Cellulose in Ionic-Liquid-Based Solvents With Different Hydrogen-Bonding Basicity and Microstructures,” Green Chemistry 24, no. 9 (2022): 3824-3833.

[47]

Q. Chen, Y. Liu, T. Tao, et al., “Sustainable, Superfast Deconstruction of Natural Cellulosic Aggregates Toward Intrinsically Green, Multifunctional Gel,” Chemical Engineering Journal 435 (2022): 134856.

[48]

D. Wu, M. Wang, W. Yu, G.-G. Wang, and J. Zhang, “A Robust, Biodegradable and Recyclable All-Cellulose Ionogel From Low-Value Wood,” Chemical Engineering Journal 486 (2024): 150121.

[49]

D. Zhao, Y. Zhu, W. Cheng, et al., “A Dynamic Gel With Reversible and Tunable Topological Networks and Performances,” Matter 2, no. 2 (2020): 390-403.

[50]

C.-W. Liew, S. Ramesh, and A. K. Arof, “Good Prospect of Ionic Liquid Based-Poly(Vinyl Alcohol) Polymer Electrolytes for Supercapacitors With Excellent Electrical, Electrochemical and Thermal Properties,” International Journal of Hydrogen Energy 39, no. 6 (2014): 2953-2963.

[51]

K. P. SH, M. S. Thayyil, S. K. Deshpande, J. TV, and J. Kolte, “Development of Ion Conducting Ionic Liquid-Based Gel Polymer Electrolyte Membrane PMMA/BMPyr.TFSI—With Improved Electrical, Optical, Thermal and Structural Properties,” Solid State Ionics 310 (2017): 166-175.

[52]

J. H. Ri, J. Jin, J. Xu, T. Peng, and K. I. Ryu, “Preparation of Iodine-Free Ionic Liquid Gel Electrolyte Using Polyethylene Oxide (PEO)-Polyethylene Glycol (PEG) and Its Application in Ti-Foil-Based Dye-Sensitized Solar Cells,” Electrochimica Acta 201 (2016): 251-259.

[53]

J. Zhu, X. Lu, W. Zhang, and X. Liu, “Substrate-Independent, Reversible, and Easy-Release Ionogel Adhesives With High Bonding Strength,” Macromolecular Rapid Communications 41, no. 24 (2020): 2000098.

[54]

K. Peng, Y. Shi, A. LaBarbiera, and S. Mitragotri, “Mucoadhesive Ionic Liquid Gel Patches for Oral Delivery,” ACS Biomaterials Science & Engineering 9 (2023): 2838-2845.

[55]

T. P. Lodge and T. Ueki, “Mechanically Tunable, Readily Processable Ion Gels by Self-Assembly of Block Copolymers in Ionic Liquids,” Accounts of Chemical Research 49, no. 10 (2016): 2107-2114.

[56]

R. Tamate, K. Hashimoto, T. Horii, et al., “Self-Healing Micellar Ion Gels Based on Multiple Hydrogen Bonding,” Advanced Materials 30, no. 36 (2018): 1802792.

[57]

X. Jiang, Z. Liu, W. Liu, et al., “Physical Ionogels With Only 2 Wt % Gelators as Efficient Quasi-Solid-State Electrolytes for Lithium Batteries,” Matter 7, no. 4 (2024): 1558-1574.

[58]

S. Chen, N. Zhang, B. Zhang, B. Zhang, and J. Song, “Multifunctional Self-Healing Ionogels From Supramolecular Assembly: Smart Conductive and Remarkable Lubricating Materials,” ACS Applied Materials & Interfaces 10 (2018): 44706-44715.

[59]

D. J. Adams, “Personal Perspective on Understanding Low Molecular Weight Gels,” Journal of the American Chemical Society 144, no. 25 (2022): 11047-11053.

[60]

S. Wang, Y. Jiang, and X. Hu, “Ionogel-Based Membranes for Safe Lithium/Sodium Batteries,” Advanced Materials 34, no. 52 (2022): 2200945.

[61]

Z. He and P. Alexandridis, “Nanoparticles in Ionic Liquids: Interactions and Organization,” Physical Chemistry Chemical Physics 17, no. 28 (2015): 18238-18261.

[62]

X. He, H. Cheng, S. Yue, and J. Ouyang, “Quasi-Solid State Nanoparticle/(Ionic Liquid) Gels With Significantly High Ionic Thermoelectric Properties,” Journal of Materials Chemistry A 8, no. 21 (2020): 10813-10821.

[63]

H. Li, F. Xu, T. Guan, Y. Li, and J. Sun, “Mechanically and Environmentally Stable Triboelectric Nanogenerator Based on High-Strength and Anti-Compression Self-Healing Ionogel,” Nano Energy 90 (2021): 106645.

[64]

T. Li, F. Liu, X. Yang, et al., “Muscle-Mimetic Highly Tough, Conductive, and Stretchable Poly(Ionic Liquid) Liquid Crystalline Ionogels With Ultrafast Self-Healing, Super Adhesive, and Remarkable Shape Memory Properties,” ACS Applied Materials & Interfaces 14 (2022): 29261-29272.

[65]

H. Huang, W. Sun, L. Sun, et al., “Internal Catalysis Significantly Promotes the Bond Exchange of Covalent Adaptable Polyurethane Networks,” Proceedings of the National Academy of Sciences of the United States of America 121, no. 34 (2024): e2404726121.

[66]

L. Yang, L. Sun, H. Huang, et al., “Mechanically Robust and Room Temperature Self-Healing Ionogel Based on Ionic Liquid Inhibited Reversible Reaction of Disulfide Bonds,” Advanced Science 10, no. 20 (2023): 2207527.

[67]

S. Xiang, X. He, F. Zheng, and Q. Lu, “Multifunctional Flexible Sensors Based on Ionogel Composed Entirely of Ionic Liquid With Long Alkyl Chains for Enhancing Mechanical Properties,” Chemical Engineering Journal 439 (2022): 135644.

[68]

L. Ye, F. Chen, J. Liu, et al., “Responsive Ionogel Surface With Renewable Antibiofouling Properties,” Macromolecular Rapid Communications 40, no. 21 (2019): 1900395.

[69]

J. Sun, R. Li, G. Lu, et al., “A Facile Strategy for Fabricating Multifunctional Ionogel Based Electronic Skin,” Journal of Materials Chemistry C 8, no. 25 (2020): 8368-8373.

[70]

B. Asbani, B. Bounor, K. Robert, et al., “Reflow Soldering-Resistant Solid-State 3D Micro-Supercapacitors Based on Ionogel Electrolyte for Powering the Internet of Things,” Journal of The Electrochemical Society 167, no. 10 (2020): 100551.

[71]

T. Guillemin, C. Douard, K. Robert, et al., “Solid-State 3D Micro-Supercapacitors Based on Ionogel Electrolyte: Influence of Adding Lithium and Sodium Salts to the Ionic Liquid,” Energy Storage Materials 50 (2022): 606-617.

[72]

Y. Wang, S. Sun, and P. Wu, “Adaptive Ionogel Paint From Room-Temperature Autonomous Polymerization of α-Thioctic Acid for Stretchable and Healable Electronics,” Advanced Functional Materials 31, no. 24 (2021): 2101494.

[73]

Y. Ren, J. Guo, Z. Liu, et al., “Ionic Liquid-Based Click-Ionogels,” Science Advances 5, no. 8 (2019): eaax0648.

[74]

C. M. Thomas, W. J. Hyun, H. C. Huang, D. Zeng, and M. C. Hersam, “Blade-Coatable Hexagonal Boron Nitride Ionogel Electrolytes for Scalable Production of Lithium Metal Batteries,” ACS Energy Letters 7, no. 4 (2022): 1558-1565.

[75]

D. S. Ashby, R. H. DeBlock, C.-H. Lai, C. S. Choi, and B. S. Dunn, “Solution-Processed Ionogels for Thin-Film Lithium-Ion Electrolytes,” Joule 1, no. 2 (2017): 344-358.

[76]

H. Tan, L. Sun, H. Huang, et al., “Continuous Melt Spinning of Adaptable Covalently Cross-Linked Self-Healing Ionogel Fibers for Multi-Functional Ionotronics,” Advanced Materials 36, no. 13 (2023): 2310020.

[77]

J. L. Shamshina, O. Zavgorodnya, J. R. Bonner, et al. ““Practical” Electrospinning of Biopolymers in Ionic Liquids,” ChemSusChem 10, no. 1 (2017): 106-111.

[78]

A. Taubert, “Electrospinning of Ionogels: Current Status and Future Perspectives,” European Journal of Inorganic Chemistry 2015, no. 7 (2014): 1148-1159.

[79]

B. Lv, G. Zhao, H. Wang, et al., “Ionogel Fiber-Based Flexible Sensor for Friction Sensing,” Advanced Materials Technologies 8, no. 10 (2023): 2201617.

[80]

J. Chen, F. Wang, G. Zhu, et al., “Breathable Strain/Temperature Sensor Based on Fibrous Networks of Ionogels Capable of Monitoring Human Motion, Respiration, and Proximity,” ACS Applied Materials & Interfaces 13 (2021): 51567-51577.

[81]

Y. Liu, C. Zhao, Y. Xiong, et al., “Versatile Ion-Gel Fibrous Membrane for Energy-Harvesting Iontronic Skin,” Advanced Functional Materials 33, no. 37 (2023): 2303723.

[82]

M. Tijero, R. Díez-Ahedo, F. Benito-Lopez, et al., “Biomolecule Storage on Non-Modified Thermoplastic Microfluidic Chip by Ink-Jet Printing of Ionogels,” Biomicrofluidics 9, no. 4 (2015): 044124.

[83]

K.-H. Choi, J. Yoo, C. K. Lee, and S.-Y. Lee, “All-Inkjet-Printed, Solid-State Flexible Supercapacitors on Paper,” Energy & Environmental Science 9 (2016): 2812-2821.

[84]

C. Cheng, E. J. Williamson, G. T. C. Chiu, and B. Han, “Engineering Biomaterials by Inkjet Printing of Hydrogels With Functional Particulates,” Med-X 2, no. 1 (2024).

[85]

J. T. Delaney, A. R. Liberski, J. Perelaer, and U. S. Schubert, “A Practical Approach to the Development of Inkjet Printable Functional Ionogels—Bendable, Foldable, Transparent, and Conductive Electrode Materials,” Macromolecular Rapid Communications 31, no. 22 (2010): 1970-1976.

[86]

M. Y. Teo, N. RaviChandran, N. Kim, et al., “Direct Patterning of Highly Conductive PEDOT:PSS/Ionic Liquid Hydrogel via Microreactive Inkjet Printing,” ACS Applied Materials & Interfaces 11 (2019): 37069-37076.

[87]

S. Peng, Q. Guo, N. Thirunavukkarasu, et al., “Tailoring of Photocurable Ionogel Toward High Resilience and Low Hysteresis 3D Printed Versatile Porous Flexible Sensor,” Chemical Engineering Journal 439 (2022): 135593.

[88]

C. Ma, J. Wei, Y. Zhang, et al., “Highly Processable Ionogels With Mechanical Robustness,” Advanced Functional Materials 33, no. 31 (2023): 2211771.

[89]

G. Ge, Q. Wang, Y. Z. Zhang, H. N. Alshareef, and X. Dong, “3D Printing of Hydrogels for Stretchable Ionotronic Devices,” Advanced Functional Materials 31, no. 52 (2021): 2107437.

[90]

H. H. Hwang, W. Zhu, G. Victorine, N. Lawrence, and S. Chen, “3D-Printing of Functional Biomedical Microdevices via Light- and Extrusion-Based Approaches,” Small Methods 2, no. 2 (2017): 1700277.

[91]

A. Basu, J. Wong, B. Cao, et al., “Mechanoactivation of Color and Autonomous Shape Change in 3D-Printed Ionic Polymer Networks,” ACS Applied Materials & Interfaces 13 (2021): 19263-19270.

[92]

K. Ahmed, N. Naga, M. Kawakami, and H. Furukawa, “Extremely Soft, Conductive, and Transparent Ionic Gels by 3D Optical Printing,” Macromolecular Chemistry and Physics 219, no. 24 (2018): 1800216.

[93]

J. Huang, Z. Yu, and P. Wu, “3D Printing of Ionogels With Complementary Functionalities Enabled by Self-Regulating Ink,” Advanced Science 10, no. 24 (2023): 2302891.

[94]

Y. Ding, J. Zhang, L. Chang, et al., “Preparation of High-Performance Ionogels With Excellent Transparency, Good Mechanical Strength, and High Conductivity,” Advanced Materials 29, no. 47 (2017): 1704253.

[95]

M. Chen, B. T. White, C. R. Kasprzak, and T. E. Long, “Advances in Phosphonium-Based Ionic Liquids and Poly(Ionic Liquid)s as Conductive Materials,” European Polymer Journal 108 (2018): 28-37.

[96]

S. A. M. Noor, P. M. Bayley, M. Forsyth, and D. R. MacFarlane, “Ionogels Based on Ionic Liquids as Potential Highly Conductive Solid State Electrolytes,” Electrochimica Acta 91 (2013): 219-226.

[97]

L. Chen and M. Guo, “Highly Transparent, Stretchable, and Conductive Supramolecular Ionogels Integrated With Three-Dimensional Printable, Adhesive, Healable, and Recyclable Character,” ACS Applied Materials & Interfaces 13 (2021): 25365-25373.

[98]

W. Qian, J. Texter, and F. Yan, “Frontiers in Poly(Ionic Liquid)s: Syntheses and Applications,” Chemical Society Reviews 46, no. 4 (2017): 1124-1159.

[99]

P. Wuamprakhon, R. Donthongkwa, K. Hantanasirisakul, et al., “Impact of Cationic Molecular Length of Ionic Liquid Electrolytes on Cell Performance of 18650 Supercapacitors,” Chemical Communications 57, no. 100 (2021): 13712-13715.

[100]

K. Liu, J. Lv, G. Fan, et al., “Flexible and Robust Bacterial Cellulose-Based Ionogels With High Thermoelectric Properties for Low-Grade Heat Harvesting,” Advanced Functional Materials 32, no. 6 (2021): 2107105.

[101]

M. Ma, Y. Shang, H. Shen, W. Li, and Q. Wang, “Highly Transparent Conductive Ionohydrogel for all-Climate Wireless Human-Motion Sensor,” Chemical Engineering Journal 420 (2021): 129865.

[102]

N. Li, L. Qiu, B. Li, et al., “Highly Conductive, Rapid Self-Healing, and Anti-Freezing Poly(3,4-Ethylenedioxythiophene)/Lignosulfonate-Cationic Guar Gum Ionogels for Multifunctional Sensors,” International Journal of Biological Macromolecules 274 (2024): 133159.

[103]

J. Lan, Y. Li, B. Yan, et al., “Transparent Stretchable Dual-Network Ionogel With Temperature Tolerance for High-Performance Flexible Strain Sensors,” ACS Applied Materials & Interfaces 12 (2020): 37597-37606.

[104]

X. Peng, H. Liu, Q. Yin, et al., “A Zwitterionic Gel Electrolyte for Efficient Solid-State Supercapacitors,” Nature Communications 7, no. 1 (2016): 11782.

[105]

G. Li, X. Guan, A. Wang, C. Wang, and J. Luo, “Cations and Anions Regulation Through Zwitterionic Gel Electrolytes for Stable Lithium Metal Anodes,” Energy Storage Materials 24 (2020): 574-578.

[106]

D. Weng, F. Xu, X. Li, et al., “Polymeric Complex-Based Transparent and Healable Ionogels With High Mechanical Strength and Ionic Conductivity as Reliable Strain Sensors,” ACS Applied Materials & Interfaces 12 (2020): 57477-57485.

[107]

Y. Zhou, Y. Yang, N. Zhou, et al., “Four-Armed Branching and Thermally Integrated Imidazolium-Based Polymerized Ionic Liquid as an All-Solid-State Polymer Electrolyte for Lithium Metal Battery,” Electrochimica Acta 324 (2019): 134827.

[108]

B. Zhao, J. Yan, F. Long, et al., “Bioinspired Conductive Enhanced Polyurethane Ionic Skin as Reliable Multifunctional Sensors,” Advanced Science 10, no. 19 (2023): 2300857.

[109]

X. He, B. Zhang, Q. Liu, et al., “Highly Conductive and Stretchable Nanostructured Ionogels for 3D Printing Capacitive Sensors With Superior Performance,” Nature Communications 15, no. 1 (2024): 6431.

[110]

J. Zhang, J. Yin, N. Li, et al., “Simultaneously Enhancing the Mechanical Strength and Ionic Conductivity of Stretchable Ionogels Enabled by Polymerization-Induced Phase Separation,” Macromolecules 55, no. 24 (2022): 10950-10959.

[111]

J. H. Kim, K. G. Cho, D. H. Cho, K. Hong, and K. H. Lee, “Ultra-Sensitive and Stretchable Ionic Skins for High-Precision Motion Monitoring,” Advanced Functional Materials 31, no. 16 (2021): 2010199.

[112]

Y. Ren, Z. Liu, G. Jin, et al., “Electric-Field-Induced Gradient Ionogels for Highly Sensitive, Broad-Range-Response, and Freeze/Heat-Resistant Ionic Fingers,” Advanced Materials 33, no. 12 (2021): 2008486.

[113]

Y. Feng, J. Yu, D. Sun, et al., “Solvent-Induced in-Situ Self-Assembly Lignin Nanoparticles to Reinforce Conductive Nanocomposite Organogels as Anti-Freezing and Anti-Dehydration Flexible Strain Sensors,” Chemical Engineering Journal 433 (2022): 133202.

[114]

S. Pan, Z. Liu, M. Wang, et al., “Mechanocombinatorially Screening Sensitivity of Stretchable Strain Sensors,” Advanced Materials 31, no. 35 (2019): 1903130.

[115]

X. Zhang, S. Zeng, Z. Hu, et al., “Bioinspired Gradient Poly(ionic liquid) Ionogels for Ionic Skins With an Ultrawide Pressure Detection Range,” ACS Materials Letters 4, no. 12 (2022): 2459-2468.

[116]

J. Le Bideau, L. Viau, and A. Vioux, “Ionogels, Ionic Liquid Based Hybrid Materials,” Chemical Society Reviews 40, no. 2 (2011): 907-925.

[117]

L. Zhang, K. Jia, J. Wang, et al., “Stretchable and Transparent Ionogel-Based Heaters,” Materials Horizons 9, no. 7 (2022): 1911-1920.

[118]

J. Wang, X. Wei, J. Shi, et al., “High-Resolution Flexible Iontronic Skins for both Negative and Positive Pressure Measurement in Room Temperature Wind Tunnel Applications,” Nature Communications 15, no. 1 (2024): 7094.

[119]

Q. Quan, C. Fan, N. Pan, et al., “Tough and Stretchable Phenolic-Reinforced Double Network Deep Eutectic Solvent Gels for Multifunctional Sensors With Environmental Adaptability,” Advanced Functional Materials 33, no. 36 (2023): 2303381.

[120]

S. Wang, M. Bai, C. Liu, et al., “Highly Stretchable Multifunctional Polymer Ionic Conductor With High Conductivity Based on Organic-Inorganic Dual Networks,” Chemical Engineering Journal 440 (2022): 135824.

[121]

W. Qiu, G. Chen, H. Zhu, Q. Zhang, and S. Zhu, “Enhanced Stretchability and Robustness Towards Flexible Ionotronics via Double-Network Structure and Ion-Dipole Interactions,” Chemical Engineering Journal 434 (2022): 134752.

[122]

H. H. Rana, J. H. Park, E. Ducrot, et al., “Extreme Properties of Double Networked Ionogel Electrolytes for Flexible and Durable Energy Storage Devices,” Energy Storage Materials 19 (2019): 197-205.

[123]

J. Xiong, X. Wang, L. Li, et al., “Low-Hysteresis and High-Toughness Hydrogels Regulated by Porous Cationic Polymers: The Effect of Counteranions,” Angewandte Chemie International Edition 63, no. 1 (2023): e202316375.

[124]

Q. Xia, W. Li, X. Zou, et al., “Metal-Organic Framework (MOF) Facilitated Highly Stretchable and Fatigue-Resistant Ionogels for Recyclable Sensors,” Materials Horizons 9, no. 11 (2022): 2881-2892.

[125]

W. Li, X. Wang, Z. Liu, et al., “Nanoconfined Polymerization Limits Crack Propagation in Hysteresis-Free Gels,” Nature Materials 23, no. 1 (2023): 131-138.

[126]

Z. Zhang, L. Qian, B. Zhang, C. Ma, and G. Zhang, “Jellyfish-Inspired Polyurea Ionogel With Mechanical Robustness, Self-Healing, and Fluorescence Enabled by Hyperbranched Cluster Aggregates,” Angewandte Chemie International Edition 63, no. 40 (2024): e202410335.

[127]

W. Li, L. Li, Z. Liu, et al., “Supramolecular Ionogels Tougher than Metals,” Advanced Materials 35, no. 30 (2023): 2301383.

[128]

B. Sun, K. Liu, B. Wu, S. Sun, and P. Wu, “Low-Hysteresis and Tough Ionogels via Low-Energy-Dissipating Cross-Linking,” Advanced Materials 36, no. 44 (2024): 2408826.

[129]

W. Li, L. Li, S. Zheng, et al., “Recyclable, Healable, and Tough Ionogels Insensitive to Crack Propagation,” Advanced Materials 34, no. 28 (2022): 2203049.

[130]

Y. Kamiyama, R. Tamate, T. Hiroi, et al., “Highly Stretchable and Self-Healable Polymer Gels From Physical Entanglements of Ultrahigh-Molecular Weight Polymers,” Science Advances 8, no. 42 (2022): eadd0226.

[131]

M. Wang, P. Zhang, M. Shamsi, et al., “Tough and Stretchable Ionogels by In Situ Phase Separation,” Nature Materials 21, no. 3 (2022): 359-365.

[132]

S. Li, Y. Cong, and J. Fu, “Tissue Adhesive Hydrogel Bioelectronics,” Journal of Materials Chemistry B 9, no. 22 (2021): 4423-4443.

[133]

Z. Liu and F. Yan, “Switchable Adhesion: On-Demand Bonding and Debonding,” Advanced Science 9, no. 12 (2022): 2200264.

[134]

X. Li, Y. Sun, S. Wang, et al., “Body Temperature-Triggered Adhesive Ionic Conductive Hydrogels for Bioelectrical Signal Monitoring,” Chemical Engineering Journal 498 (2024): 155195.

[135]

M. Zhang, A. Pal, Z. Zheng, et al., “Hydrogel Muscles Powering Reconfigurable Micro-Metastructures With Wide-Spectrum Programmability,” Nature Materials 22, no. 10 (2023): 1243-1252.

[136]

X. Zhang, H. Ding, Z. Li, Y. Bai, and L. Zhang, “A “Mesh Scaffold” That Regulates the Mechanical Properties and Restricts the Phase Transition-Induced Volume Change of the PNIPAM-Based Hydrogel for Wearable Sensors,” Materials Horizons 11, no. 3 (2024): 835-846.

[137]

S. Xu, S. Wu, R. Zhu, Z. Qiu, and Y. Yan, “Fully Physically Crosslinked PNIPAM Ionogels With High Mechanical Properties and Temperature-Managed Adhesion Achieved by H2O/Ionic Liquid Binary Solvents,” Advanced Functional Materials 34, no. 41 (2024): 2405965.

[138]

H. Fan, J. Wang, and J. P. Gong, “Barnacle Cement Proteins-Inspired Tough Hydrogels With Robust, Long-Lasting, and Repeatable Underwater Adhesion,” Advanced Functional Materials 31, no. 11 (2020): 2009334.

[139]

J. Xiong, M. Duan, X. Zou, et al., “Biocompatible Tough Ionogels With Reversible Supramolecular Adhesion,” Journal of the American Chemical Society 146, no. 20 (2024): 13903-13913.

[140]

Y. Shi, B. Wu, S. Sun, and P. Wu, “Peeling-Stiffening Self-Adhesive Ionogel With Superhigh Interfacial Toughness,” Advanced Materials 36, no. 11 (2023): 2310576.

[141]

S. Wang, R. Ou, J. Li, et al., “Deformation-Resistant Underwater Adhesion in a Wide Salinity Range,” Small 20, no. 44 (2024): 2403350.

[142]

N. Yu, P. Liu, Y. Lin, and A. Zhang, “The Robustness Waterproof Ionogel Based on the Phase Separation to Form Soft Hard Heterostructures and the Interaction of Cation-π Realizes Underwater Adhesion and Sensing,” Chemical Engineering Journal 497 (2024): 155046.

[143]

H. Fan and J. P. Gong, “Bioinspired Underwater Adhesives,” Advanced Materials 33, no. 44 (2021): 2102983.

[144]

J. Wei, P. Xiao, and T. Chen, “Water-Resistant Conductive Gels Toward Underwater Wearable Sensing,” Advanced Materials 35, no. 42 (2023): 2211758.

[145]

L. Ma, J. Wang, J. He, et al., “Ultra-Sensitive, Durable and Stretchable Ionic Skins With Biomimetic Micronanostructures for Multi-Signal Detection, High-Precision Motion Monitoring, and Underwater Sensing,” Journal of Materials Chemistry A 9, no. 47 (2021): 26949-26962.

[146]

Z. Yu and P. Wu, “A Highly Transparent Ionogel With Strength Enhancement Ability for Robust Bonding in an Aquatic Environment,” Materials Horizons 8, no. 7 (2021): 2057-2064.

[147]

S. Xiang, F. Zheng, S. Chen, and Q. Lu, “Self-Healable, Recyclable, and Ultrastrong Adhesive Ionogel for Multifunctional Strain Sensor,” ACS Applied Materials & Interfaces 13 (2021): 20653-20661.

[148]

Z. Yu and P. Wu, “Water-Resistant Ionogel Electrode With Tailorable Mechanical Properties for Aquatic Ambulatory Physiological Signal Monitoring,” Advanced Functional Materials 31, no. 51 (2021): 2107226.

[149]

J. Wei, Y. Zheng, and T. Chen, “A Fully Hydrophobic Ionogel Enables Highly Efficient Wearable Underwater Sensors and Communicators,” Materials Horizons 8, no. 10 (2021): 2761-2770.

[150]

S. Wang, J. Li, S. Li, et al., “Self-Contained Underwater Adhesion and Informational Labeling Enabled by Arene-Functionalized Polymeric Ionogels,” Advanced Functional Materials 33, no. 45 (2023): 2306814.

[151]

Y. M. Kim and H. C. Moon, “Ionoskins: Nonvolatile, Highly Transparent, Ultrastretchable Ionic Sensory Platforms for Wearable Electronics,” Advanced Functional Materials 30, no. 4 (2019): 1907290.

[152]

X. Zou, Q. Lu, Y. Zhong, et al., “Flexible, Flame-Resistant, and Dendrite-Impermeable Gel-Polymer Electrolyte for Li-O2/Air Batteries Workable Under Hurdle Conditions,” Small 14, no. 34 (2018): 1801798.

[153]

Z. Liu, Y. Wang, Y. Ren, et al., “Poly(Ionic Liquid) Hydrogel-Based Anti-Freezing Ionic Skin for a Soft Robotic Gripper,” Materials Horizons 7, no. 3 (2020): 919-927.

[154]

J. Liu, X. Zhang, Y. Cui, et al., “Ionic Liquid/Water Binary Solvent Anti-Freezing Hydrogel for Strain and Temperature Sensors,” ACS Applied Materials & Interfaces 16 (2024): 5208-5216.

[155]

L. Sun, S. Chen, Y. Guo, et al., “Ionogel-Based, Highly Stretchable, Transparent, Durable Triboelectric Nanogenerators for Energy Harvesting and Motion Sensing Over a Wide Temperature Range,” Nano Energy 63 (2019): 103847.

[156]

X. Lyu, H. Zhang, S. Yang, et al., “Strain-Stiffening Ionogel With High-Temperature Tolerance via the Synergy of Ionic Clusters and Hydrogen Bonds,” ACS Applied Materials & Interfaces 15 (2023): 31888-31898.

[157]

X. Lyu, H. Zhang, S. Shen, et al., “Multi-Modal Sensing Ionogels With Tunable Mechanical Properties and Environmental Stability for Aquatic and Atmospheric Environments,” Advanced Materials 36, no. 45 (2024): 2410572.

[158]

L. Yu, L. Yu, Q. Liu, et al., “Monolithic Task-Specific Ionogel Electrolyte Membrane Enables High-Performance Solid-State Lithium-Metal Batteries in Wide Temperature Range,” Advanced Functional Materials 32, no. 14 (2022): 2110653.

[159]

J. Mercken, D. De Sloovere, B. Joos, et al., “Altering Mechanical Properties to Improve Electrode Contacts by Organic Modification of Silica-Based Ionogel Electrolytes for Sodium-Ion Batteries,” Small 19, no. 40 (2023): 2301862.

[160]

Y. Lu, S. K. Das, S. S. Moganty, and L. A. Archer, “Ionic Liquid-Nanoparticle Hybrid Electrolytes and Their Application in Secondary Lithium-Metal Batteries,” Advanced Materials 24, no. 32 (2012): 4430-4435.

[161]

W. J. Hyun, C. M. Thomas, N. S. Luu, and M. C. Hersam, “Layered Heterostructure Ionogel Electrolytes for High-Performance Solid-State Lithium-Ion Batteries,” Advanced Materials 33, no. 13 (2021): 2007864.

[162]

Y. Lu, S. S. Moganty, J. L. Schaefer, and L. A. Archer, “Ionic Liquid-Nanoparticle Hybrid Electrolytes,” Journal of Materials Chemistry 22, no. 9 (2012): 4066.

[163]

M. Li, R. Jing, K. Jia, et al., “Organic/Inorganic Hybrid Ionogel Fiber With Synergistically Enhanced Mechanical and Ionic Thermoelectric Performances,” Advanced Functional Materials 35, no. 8 (2024): 2415856.

[164]

B. Yiming, X. Guo, N. Ali, et al., “Ambiently and Mechanically Stable Ionogels for Soft Ionotronics,” Advanced Functional Materials 31, no. 33 (2021): 2102773.

[165]

Z. Cao, H. Liu, and L. Jiang, “Transparent, Mechanically Robust, and Ultrastable Ionogels Enabled by Hydrogen Bonding Between Elastomers and Ionic Liquids,” Materials Horizons 7, no. 3 (2020): 912-918.

[166]

X. Yao, S. Zhang, N. Wei, et al., “Poly(Ionic Liquid) Functionalization: A General Strategy for Strong, Tough, Ionic Conductive, and Multifunctional Polysaccharide Hydrogels Toward Sensors,” SusMat 4, no. 6 (2024): e249.

[167]

X. Liu, X. Ji, R. Zhu, J. Gu, and J. Liang, “A Microphase-Separated Design Toward an All-Round Ionic Hydrogel With Discriminable and Anti-Disturbance Multisensory Functions,” Advanced Materials 36, no. 15 (2024): 2309508.

[168]

Z. Liu, Y. Zheng, L. Jin, et al., “Highly Breathable and Stretchable Strain Sensors With Insensitive Response to Pressure and Bending,” Advanced Functional Materials 31, no. 14 (2021): 2007622.

[169]

J. Shi, S. Xie, Z. Liu, M. Cai, and C. F. Guo, “Non-Hygroscopic Ionogel-Based Humidity-Insensitive Iontronic Sensor Arrays for Intra-Articular Pressure Sensing,” National Science Review 11, no. 11 (2024): nwae351.

[170]

W. Zhao, Z. Lei, and P. Wu, “Mechanically Adaptative and Environmentally Stable Ionogels for Energy Harvest,” Advanced Science 10, no. 18 (2023): 2300253.

[171]

R. Du, T. Bao, T. Zhu, et al., “A Low-Hysteresis and Highly Stretchable Ionogel Enabled by Well Dispersed Slidable Cross-Linker for Rapid Human-Machine Interaction,” Advanced Functional Materials 33, no. 30 (2023): 2212888.

[172]

K. S. Egorova, E. G. Gordeev, and V. P. Ananikov, “Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine,” Chemical Reviews 117, no. 10 (2017): 7132-7189.

[173]

G. C. Luque, M. L. Picchio, A. P. S. Martins, et al., “3D Printable and Biocompatible Iongels for Body Sensor Applications,” Advanced Electronic Materials 7, no. 8 (2021): 2100178.

[174]

X. Li, H. Jiang, Y. Zhang, et al., “Stimulation-Reinforced Cellulose-Protein Ionogels With Superior Mechanical Strength and Temperature Resistance,” Advanced Functional Materials 34, no. 48 (2024): 2408160.

[175]

B. Tang, D. K. Schneiderman, F. Z. Bidoky, C. D. Frisbie, and T. P. Lodge, “Printable, Degradable, and Biocompatible Ion Gels From a Renewable ABA Triblock Polyester and a Low Toxicity Ionic Liquid,” ACS Macro Letters 6, no. 10 (2017): 1083-1088.

[176]

Q. Xu, M. Hou, L. Wang, X. Zhang, and L. Liu, “Anti-Bacterial, Anti-Freezing Starch/Ionic Liquid/PVA Ion-Conductive Hydrogel With High Performance for Multi-Stimulation Sensitive Responsive Sensors,” Chemical Engineering Journal 477 (2023): 147065.

[177]

M. D. T. Torres, S. Voskian, P. Brown, et al., “Coatable and Resistance-Proof Ionic Liquid for Pathogen Eradication,” ACS Nano 15, no. 1 (2021): 966-978.

[178]

P. Liu, K. Jin, W. Wong, et al., “Ionic Liquid Functionalized Non-Releasing Antibacterial Hydrogel Dressing Coupled With Electrical Stimulation for the Promotion of Diabetic Wound Healing,” Chemical Engineering Journal 415 (2021): 129025.

[179]

N. Jiang, X. Chang, D. Hu, et al., “Flexible, Transparent, and Antibacterial Ionogels Toward Highly Sensitive Strain and Temperature Sensors,” Chemical Engineering Journal 424 (2021): 130418.

[180]

Y. Yu, Z. Yang, S. Ren, Y. Gao, and L. Zheng, “Multifunctional Hydrogel Based on Ionic Liquid With Antibacterial Performance,” Journal of Molecular Liquids 299 (2020): 112185.

[181]

C. Zhou, C. Sheng, L. Gao, et al., “Engineering Poly(Ionic Liquid) Semi-IPN Hydrogels With Fast Antibacterial and Anti-Inflammatory Properties for Wound Healing,” Chemical Engineering Journal 413 (2021): 127429.

[182]

Z. Yang, R. Huang, B. Zheng, et al., “Highly Stretchable, Adhesive, Biocompatible, and Antibacterial Hydrogel Dressings for Wound Healing,” Advanced Science 8, no. 8 (2021): 2003627.

[183]

H. Zhou, W. Zhao, and L. Zhao, “Radiation Synthesis of Covalently/Non-Covalently Coupled all Ionic Liquid-Based Ionogels With Rapid Self-Healing, Environmental Tolerance for Multifunctional Ionic Skin,” Chemical Engineering Journal 489 (2024): 151163.

[184]

X. Wen, Z. Deng, H. Wang, et al., “High Strength, Self-Healing Sensitive Ionogel Sensor Based on MXene/Ionic Liquid Synergistic Conductive Network for Human-Motion Detection,” Journal of Materials Chemistry B 11, no. 47 (2023): 11251-11264.

[185]

X. Wang, Y.-L. Wang, X. Yang, et al., “Skin-Inspired Healable Conductive Elastomers With Exceptional Strain-Adaptive Stiffening and Damage Tolerance,” Macromolecules 54, no. 23 (2021): 10767-10775.

[186]

F. Xu, H. Li, and Y. Li, “Sea Cucumber-Inspired Polyurethane Demonstrating Record-Breaking Mechanical Properties in Room-Temperature Self-Healing Ionogels,” Advanced Materials 36, no. 44 (2024): 2412317.

[187]

L. Sun, H. Huang, L. Zhang, et al., “Spider-Silk-Inspired Tough, Self-Healing, and Melt-Spinnable Ionogels,” Advanced Science 11, no. 3 (2023): 2305697.

[188]

T. Li, Y. Wang, S. Li, X. Liu, and J. Sun, “Mechanically Robust, Elastic, and Healable Ionogels for Highly Sensitive Ultra-Durable Ionic Skins,” Advanced Materials 32, no. 32 (2020): 2002706.

[189]

L. Jia, J. Jiang, A. Ren, et al., “Ultra-Fast Cryogenic Self-Healing Ionic Hydrogel for Flexible Wearable Bioelectronics,” Chemical Engineering Journal 495 (2024): 153734.

[190]

Z. Zhang, X. Zhao, X. Song, et al., “Versatile Ionic Liquid Gels Formed by Dynamic Covalent Bonding and Microphase Separated Structures,” Materials Horizons 11, no. 17 (2024): 4171-4182.

[191]

C. Hong, B. Li, J. Zhang, Y. Li, and J. Sun, “Supramolecular Polymer-Based Ionogels Enable Large-Scale Fabrication of Stable Smart Windows With Room-Temperature Closed-Loop Recyclability and Self-Healing Capability,” Advanced Functional Materials 34, no. 23 (2024): 2313781.

[192]

X. Yao, S. Zhang, L. Qian, et al., “Super Stretchable, Self-Healing, Adhesive Ionic Conductive Hydrogels Based on Tailor-Made Ionic Liquid for High-Performance Strain Sensors,” Advanced Functional Materials 32, no. 33 (2022): 2204565.

[193]

Z. Yu and P. Wu, “Underwater Communication and Optical Camouflage Ionogels,” Advanced Materials 33, no. 24 (2021): 2008479.

[194]

L. Li, W. Li, X. Wang, et al., “Ultra-Tough and Recyclable Ionogels Constructed by Coordinated Supramolecular Solvents,” Angewandte Chemie International Edition 61, no. 50 (2022): e202212512.

[195]

X. Fan, Y. Luo, K. Li, et al., “A Recyclable Ionogel With High Mechanical Robustness Based on Covalent Adaptable Networks,” Advanced Materials 36, no. 44 (2024): 2407398.

[196]

H. Zhang, X. Yu, Y. Wang, et al., “Mechanically Robust, Stretchable, Recyclable, and Biodegradable Ionogels Reinforced by Polylactide Stereocomplex Nanocrystals,” Composites Science and Technology 230 (2022): 109740.

[197]

S. Chen, Z. Wu, C. Chu, et al., “Biodegradable Elastomers and Gels for Elastic Electronics,” Advanced Science 9, no. 13 (2022): 2105146.

[198]

H. Huang, H. Wang, L. Sun, et al., “Long-Range Electronic Effect-Promoted Ring-Opening Polymerization of Thioctic Acid to Produce Biomimetic Ionic Elastomers for Bioelectronics,” CCS Chemistry 6, no. 3 (2024): 761-773.

[199]

F. Gao, C. Liu, L. Zhang, et al., “Wearable and Flexible Electrochemical Sensors for Sweat Analysis: A Review,” Microsystems & Nanoengineering 9 (2023): 1-21.

[200]

S. Patle and D. Rotake, “Recent Advances, Technological Challenges and Requirements to Predict the Future Treads in Wearable Sweat Sensors: A Critical Review,” Microchemical Journal 200 (2024): 110457.

[201]

J.-H. Ha, Y. Jeong, J. Ahn, et al., “A Wearable Colorimetric Sweat pH Sensor-Based Smart Textile for Health State Diagnosis,” Materials Horizons 10, no. 10 (2023): 4163-4171.

[202]

M. Yang, N. Sun, X. Lai, et al., “Paper-Based Sandwich-Structured Wearable Sensor With Sebum Filtering for Continuous Detection of Sweat pH,” ACS Sensors 8, no. 1 (2023): 176-186.

[203]

H. Zhi, Y. Qin, Y. Li, F. Wang, and L. Feng, “A Flexible, Water Anchoring, and Colorimetric Ionogel for Sweat Monitoring,” Biomaterials Science 13, no. 3 (2025): 677-687.

[204]

V. F. Curto, C. Fay, S. Coyle, et al., “Real-Time Sweat pH Monitoring Based on a Wearable Chemical Barcode Micro-Fluidic Platform Incorporating Ionic Liquids,” Sensors and Actuators B: Chemical 171-172 (2012): 1327-1334.

[205]

G. Matzeu, G. R. S. Naveh, S. Agarwal, et al., “Functionalized Mouth-Conformable Interfaces for pH Evaluation of the Oral Cavity,” Advanced Science 8, no. 12 (2021): 2003416.

[206]

A. Gardner, G. Carpenter, and P.-W. So, “Salivary Metabolomics: From Diagnostic Biomarker Discovery to Investigating Biological Function,” Metabolites 10, no. 2 (2020): 47.

[207]

H. Zhi, X. Zhang, F. Wang, and L. Feng, “A pH-Sensitive, Stretchable, Antibacterial Artificial Tongue Based on MXene Cross-Linked Ionogel,” ACS Applied Materials & Interfaces 14 (2022): 52422-52429.

[208]

Y. Isano, H. Fujita, K. Murakami, et al., “Transparent and Breathable Ion Gel-Based Sensors Toward Multimodal Sensing Ability,” Advanced Materials Technologies 7, no. 11 (2022): 2200209.

[209]

S. Xiao, J. Nie, R. Tan, et al., “Fast-Response Ionogel Humidity Sensor for Real-Time Monitoring of Breathing Rate,” Materials Chemistry Frontiers 3, no. 3 (2019): 484-491.

[210]

W.-Z. Li, M.-R. Wu, C.-Y. Tung, et al., “Strain Control of a no Gas Sensor Based on Ga-Doped Zno Epilayers,” ACS Applied Electronic Materials 2, no. 5 (2020): 1365-1372.

[211]

J.-Y. Jeon, S.-J. Park, and T.-J. Ha, “Wearable Nitrogen Oxide Gas Sensors Based on Hydrophobic Polymerized Ionogels for the Detection of Biomarkers in Exhaled Breath,” Sensors and Actuators B: Chemical 360 (2022): 131672.

[212]

K. Le, X. Sun, J. Chen, et al., “Stretchable, Self-Healing, Biocompatible, and Durable Ionogel for Continuous Wearable Strain and Physiological Signal Monitoring,” Chemical Engineering Journal 471 (2023): 144675.

[213]

S. Zheng, W. Li, Y. Ren, et al., “Moisture-Wicking, Breathable, and Intrinsically Antibacterial Electronic Skin Based on Dual-Gradient Poly(Ionic Liquid) Nanofiber Membranes,” Advanced Materials 34, no. 4 (2021): 2106570.

[214]

Y. H. Pai, C. Xu, R. Zhu, et al., “Piezoelectric-Augmented Thermoelectric Ionogels for Self-Powered Multimodal Medical Sensors,” Advanced Materials 37, no. 6 (2024): 2414663.

[215]

A. Aguzin, G. C. Luque, L. I. Ronco, et al., “Gelatin and Tannic Acid Based Iongels for Muscle Activity Recording and Stimulation Electrodes,” ACS Biomaterials Science & Engineering 8 (2022): 2598-2609.

[216]

A. Veronica, H. Y. Y. Nyein, and I. M. Hsing, “Ionogels and Eutectogels for Stable and Long-Term EEG and EMG Signal Acquisition,” Materials Futures 3, no. 3 (2024): 033501.

[217]

S. Ji, C. Wan, T. Wang, et al., “Water-Resistant Conformal Hybrid Electrodes for Aquatic Endurable Electrocardiographic Monitoring,” Advanced Materials 32, no. 26 (2020): 2001496.

[218]

Y. Cao, Y. J. Tan, S. Li, et al., “Self-Healing Electronic Skins for Aquatic Environments,” Nature Electronics 2, no. 2 (2019): 75-82.

[219]

S. Tang, D. Sha, Z. He, et al., “Environmentally Adaptable Organo-Ionic Gel-Based Electrodes for Real-Time on-Skin Electrocardiography Monitoring,” Advanced Healthcare Materials 12, no. 18 (2023): 2300475.

[220]

K. G. Cho, S. An, D. H. Cho, et al., “Block Copolymer-Based Supramolecular Ionogels for Accurate on-Skin Motion Monitoring,” Advanced Functional Materials 31, no. 36 (2021): 2102386.

[221]

Y. Yang, Y. An, Z. Yang, et al., “Antifreezing, Adhesive, and Ultra-Stretchable Ionogel for AI-Enabled Motion Tracking and Recognition in Winter Sports,” ACS Applied Materials & Interfaces 15 (2023): 23749-23757.

[222]

W. Xiao, T. He, W. Zhao, et al., “Robust and Tunable Hydrogels Strengthened by Dynamic Amphiphilic Ionic Domains,” Chemical Engineering Journal 494 (2024): 153136.

[223]

G. Ge, Y. Zhang, X. Xiao, et al., “Rapidly Gelling, Highly Adhesive, and Mechanically Robust Ionogels for Stretchable and Wireless Electronics,” Advanced Functional Materials 34, no. 21 (2024): 2310963.

[224]

J. Wang, Y. Zhu, Z. Wu, et al., “Wearable Multichannel Pulse Condition Monitoring System Based on Flexible Pressure Sensor Arrays,” Microsystems & Nanoengineering 8 (2022): 16.

[225]

L. Pan, L. Han, H. Liu, et al., “Flexible Sensor Based on Hair-Like Microstructured Ionic Hydrogel With High Sensitivity for Pulse Wave Detection,” Chemical Engineering Journal 450 (2022): 137929.

[226]

J. Chen, H. Liu, W. Wang, et al., “High Durable, Biocompatible, and Flexible Piezoelectric Pulse Sensor Using Single-Crystalline III-N Thin Film,” Advanced Functional Materials 29, no. 37 (2019): 1903162.

[227]

L. Xu, Z. Huang, Z. Deng, et al., “A Transparent, Highly Stretchable, Solvent-Resistant, Recyclable Multifunctional Ionogel With Underwater Self-Healing and Adhesion for Reliable Strain Sensors,” Advanced Materials 33, no. 51 (2021): e2105306.

[228]

H. Wang, Y. Mao, D. Ji, et al., “Transparent, Self-Adhesive, Highly Environmental Stable, and Water-Resistant Ionogel Enabled Reliable Strain/Temperature Sensors and Underwater Communicators,” Chemical Engineering Journal 471 (2023): 144674.

[229]

J. Kim, A. S. Campbell, B. E. de Avila, and J. Wang, “Wearable Biosensors for Healthcare Monitoring,” Nature Biotechnology 37, no. 4 (2019): 389-406.

[230]

L. Zhao, C. Liang, Y. Huang, et al., “Emerging Sensing and Modeling Technologies for Wearable and Cuffless Blood Pressure Monitoring,” NPJ Digital Medicine 6, no. 1 (2023): 93.

[231]

Y. Gao, L. Yu, J. C. Yeo, and C. T. Lim, “Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability,” Advanced Materials 32 (2020): e1902133.

[232]

J. Liu, J. Wang, T. Wang, et al., “Three-Dimensional Electrochemical Immunosensor for Sensitive Detection of Carcinoembryonic Antigen Based on Monolithic and Macroporous Graphene Foam,” Biosensors and Bioelectronics 65 (2015): 281-286.

[233]

A. B. Chinen, C. M. Guan, J. R. Ferrer, et al., “Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence,” Chemical Reviews 115, no. 19 (2015): 10530-10574.

[234]

C. Wang, Y. Wang, H. Zhang, et al., “Molecularly Imprinted Photoelectrochemical Sensor for Carcinoembryonic Antigen Based on Polymerized Ionic Liquid Hydrogel and Hollow Gold Nanoballs/MoSe2 Nanosheets,” Analytica Chimica Acta 1090 (2019): 64-71.

[235]

X. Ju, J. Kong, G. Qi, et al., “A Wearable Electrostimulation-Augmented Ionic-Gel Photothermal Patch Doped With MXene for Skin Tumor Treatment,” Nature Communications 15, no. 1 (2024): 762.

[236]

B. Wang, D. Yang, Z. Chang, et al., “Wearable Bioelectronic Masks for Wireless Detection of Respiratory Infectious Diseases by Gaseous Media,” Matter 5, no. 12 (2022): 4347-4362.

[237]

G. Yang, Y. Hu, W. Guo, et al., “Tunable Hydrogel Electronics for Diagnosis of Peripheral Neuropathy,” Advanced Materials 36, no. 18 (2023): 2308831.

[238]

N. S. Zhong and G. Q. Zeng, “Prevention and Treatment of Chronic Respiratory Diseases in China,” Chronic Diseases and Translational Medicine 5, no. 4 (2019): 209-213.

[239]

K. L. Bjornard, L. S. Gilchrist, H. Inaba, et al., “Peripheral Neuropathy in Children and Adolescents Treated for Cancer,” Lancet Child & Adolescent Health 2 (2018): 744-754.

[240]

R. Ji, S. Yan, Z. Zhu, et al., “Ureido-Ionic Liquid Mediated Conductive Hydrogel: Superior Integrated Properties for Advanced Biosensing Applications,” Advanced Science 11, no. 33 (2024): 2401869.

[241]

H. Zhao, S. Wang, T. Li, et al., “Stretchable Multi-Channel Ionotronic Electrodes for In Situ Dual-Modal Monitoring of Muscle-Vascular Activity,” Advanced Functional Materials 34, no. 2 (2023): 2308686.

RIGHTS & PERMISSIONS

2025 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

74

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/