Boosting Li–O2 Battery Performance and Stability With ZnI2: Synergistic Effects on Anode Protection and Cathode Activation

Byoungjoon Hwang , Myeong-Chang Sung , Seungho Jung , Min Sang Kim , Dong-Wan Kim

SusMat ›› 2025, Vol. 5 ›› Issue (5) : e70020

PDF
SusMat ›› 2025, Vol. 5 ›› Issue (5) : e70020 DOI: 10.1002/sus2.70020
RESEARCH ARTICLE

Boosting Li–O2 Battery Performance and Stability With ZnI2: Synergistic Effects on Anode Protection and Cathode Activation

Author information +
History +
PDF

Abstract

Recent advancements in lithium–oxygen (Li–O2) batteries have focused on incorporating redox mediators (RMs) into the electrolyte to address challenges of low energy efficiency and poor cycle life. However, various soluble RMs induce parasitic reactions with Li, compromising the anode stability. In this study, we design optimized Li–O2 batteries by introducing ZnI2 into the electrolyte, which serves a dual function: facilitating a stable LiZn/Zn protective layer on the Li metal anode and acting as an effective RM. The in situ formed LiZn/Zn layer prevents I3 shuttle effects, stabilizing the Li anode and promoting uniform Li plating and stripping. Additionally, the ZnI2 mediator facilitates rapid conversion of the I/I3 and I3/I2 redox couples at the cathode, contributing to a more reversible and lower overpotential Li2O2 cycle. Notably, ZnI2 enhances early-stage LiO2 formation, verified by in situ Raman spectroscopy, which supports uniform sheet-like Li2O2 deposition and contributes to stable cycling. These synergistic effects caused a significant reduction in the charge potential to less than 3.4 V, enabling over 800 stable cycles. This approach provides a viable pathway to achieving high energy density and long cycle life in Li–O2 batteries, positioning them for practical applications.

Keywords

zinc iodide / redox mediator / LiZn/Zn protect layer / stable SEI layer / Li–O2 batteries

Cite this article

Download citation ▾
Byoungjoon Hwang, Myeong-Chang Sung, Seungho Jung, Min Sang Kim, Dong-Wan Kim. Boosting Li–O2 Battery Performance and Stability With ZnI2: Synergistic Effects on Anode Protection and Cathode Activation. SusMat, 2025, 5(5): e70020 DOI:10.1002/sus2.70020

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J.-M. Tarascon, “Li-O2 and Li-S Batteries With High Energy Storage,” Nature Materials 11, no. 1 (2012): 19-29.

[2]

X. Chi, M. Li, J. Di, et al., “A Highly Stable and Flexible Zeolite Electrolyte Solid-State Li-air Battery,” Nature 592, no. 7855 (2021): 551-557.

[3]

M.-C. Sung, C. H. Kim, B. Hwang, and D.-W. Kim, “Rationalizing the Catalytic Surface Area of a Vacancy-Enriched Layered Perovskite LaSrCrO4 Nanowires on Oxygen Electrocatalyst for Enhanced Performance of Li-O2 Batteries,” Carbon Energy 6, no. 10 (2024): e550.

[4]

T. Liu, J. P. Vivek, E. W. Zhao, J. Lei, N. Garcia-Araez, and C. P. Grey, “Current Challenges and Routes Forward for Nonaqueous Lithium-air Batteries,” Chem. Rev. 120, no. 14 (2020): 6558-6625.

[5]

M.-C. Sung, G.-H. Lee, and D.-W. Kim, “Efficient Li2O2 Oxidation Kinetics of Perovskite-Type Lanthanum Chromium-Based Oxide by Promoter Interface Formation for Lithium-Oxygen Batteries,” Energy Storage Mater 60 (2023): 102829.

[6]

M. Tułodziecki, G. M. Leverick, C. V. Amanchukwu, et al., “The Role of Iodide in the Formation of Lithium Hydroxide in Lithium-oxygen Batteries,” Energy & Environmental Science 10, no. 8 (2017): 1828-1842.

[7]

B. Kim, M.-C. Sung, G.-H. Lee, et al., “Aligned Ion Conduction Pathway of Polyrotaxane-Based Electrolyte With Dispersed Hydrophobic Chains for Solid-States Lithium-Oxygen Batteries,” Nano Micro Lett 17, no. 1 (2025): 31.

[8]

D. G. Kwabi, T. P. Batcho, C. V. Amanchukwu, et al., “Chemical Instability of Dimethyl Sulfoxide in Lithium-air Batteries,” Journal of Physical Chemistry Letters 5, no. 16 (2014): 2850-2856.

[9]

C. H. Kim, M.-C. Sung, B. Hwang, and D.-W. Kim, “Cu3P Nanoarrays Derived From 7,7,8,8-Tetracyanoquinodimethane for High-Rate Electrocatalytic Oxygen Reactions of Lithium-Oxygen Batteries,” International Journal of Energy Research 2024, no. 1 (2024): 1756429.

[10]

D. Xu, Z.-l. Wang, J.-j. Xu, L.-l. Zhang, and X.-b. Zhang, “Novel DMSO-Based Electrolyte for High Performance Rechargeable Li-O2 Batteries,” Chemical Communications 48, no. 55 (2012): 6948-6950.

[11]

S.-M. Xu, X. Liang, X.-Y. Wu, et al., “Multistaged Discharge Constructing Heterostructure With Enhanced Solid-Solution Behavior for Long-Life Lithium-Oxygen Batteries,” Nature Communications 10, no. 1 (2019): 5810.

[12]

X. Y. Yang, J. J. Xu, Z. W. Chang, et al., “Blood-Capillary-Inspired, Free-Standing, Flexible, and Low-Cost Super-Hydrophobic N-CNTs@ SS Cathodes for High-Capacity, High-Rate, and Stable Li-air Batteries,” Advanced Energy Materials 8, no. 12 (2018): 1702242.

[13]

J. Zhang, B. Sun, Y. Zhao, et al., “A Versatile Functionalized Ionic Liquid to Boost the Solution-Mediated Performances of Lithium-Oxygen Batteries,” Nature Communications 10, no. 1 (2019): 602.

[14]

B. J. Bergner, A. Schürmann, K. Peppler, A. Garsuch, and J. R. Janek, “TEMPO: A Mobile Catalyst for Rechargeable Li-O2 Batteries,” Journal of the American Chemical Society 136, no. 42 (2014): 15054-15064.

[15]

S.-W. Ke, W. Li, Y. Gu, et al., “Covalent Organic Frameworks With Ni-Bis (dithiolene) and Co-Porphyrin Units as Bifunctional Catalysts for Li-O2 Batteries,” Science Advances 9, no. 5 (2023): eadf2398.

[16]

K. Liao, T. Zhang, Y. Wang, et al., “Nanoporous Ru as a Carbon-and Binder-Free Cathode for Li-O2 Batteries,” Chemsuschem 8, no. 8 (2015): 1429-1434.

[17]

X. Gao, Y. Chen, L. Johnson, and P. G. Bruce, “Promoting Solution Phase Discharge in Li-O2 Batteries Containing Weakly Solvating Electrolyte Solutions,” Nature Materials 15, no. 8 (2016): 882-888.

[18]

J. Zhang, B. Sun, Y. Zhao, K. Kretschmer, and G. Wang, “Modified Tetrathiafulvalene as an Organic Conductor for Improving Performances of Li−O2 Batteries,” Angew Chem-Int Edit 56, no. 29 (2017): 8505-8509.

[19]

S. H. Lee, J. B. Park, H. S. Lim, and Y. K. Sun, “An Advanced Separator for Li-O2 Batteries: Maximizing the Effect of Redox Mediators,” Advanced Energy Materials 7, no. 18 (2017): 1602417.

[20]

G. Leverick, M. Tułodziecki, R. Tatara, F. Bardé, and Y. Shao-Horn, “Solvent-Dependent Oxidizing Power of LiI Redox Couples for Li-O2 Batteries,” Joule 3, no. 4 (2019): 1106-1126.

[21]

X. P. Zhang, Y. N. Li, Y. Y. Sun, and T. Zhang, “Inverting the Triiodide Formation Reaction by the Synergy Between Strong Electrolyte Solvation and Cathode Adsorption for Lithium-oxygen Batteries,” Angew Chem-Int Edit 58, no. 51 (2019): 18394-18398.

[22]

D. Kundu, R. Black, B. Adams, and L. F. Nazar, “A Highly Active Low Voltage Redox Mediator for Enhanced Rechargeability of Lithium-oxygen Batteries,” ACS Central Sci 1, no. 9 (2015): 510-515.

[23]

T. Zhang, K. Liao, P. He, and H. Zhou, “A Self-Defense Redox Mediator for Efficient Lithium-O2 Batteries,” Energy & Environmental Science 9, no. 3 (2016): 1024-1030.

[24]

W.-J. Kwak, D. Hirshberg, D. Sharon, et al., “Understanding the Behavior of Li-oxygen Cells Containing LiI,” Journal of Materials Chemistry A 3, no. 16 (2015): 8855-8864.

[25]

Y. Chen, S. A. Freunberger, Z. Peng, O. Fontaine, and P. G. Bruce, “Charging a Li-O2 Battery Using a Redox Mediator,” Nature Chemistry 5, no. 6 (2013): 489-494.

[26]

B. J. Bergner, M. R. Busche, R. Pinedo, B. B. Berkes, D. Schröder, and J. Janek, “How to Improve Capacity and Cycling Stability for next Generation Li-O2 Batteries: Approach With a Solid Electrolyte and Elevated Redox Mediator Concentrations,” ACS Appl Mater Interfaces 8, no. 12 (2016): 7756-7765.

[27]

H. D. Lim, H. Song, J. Kim, et al., “Superior Rechargeability and Efficiency of Lithium-oxygen Batteries: Hierarchical Air Electrode Architecture Combined With a Soluble Catalyst,” Angew Chem-Int 53, no. 15 (2014): 3926-3931.

[28]

T. Liu, M. Leskes, W. Yu, et al., “Cycling Li-O2 Batteries via LiOH Formation and Decomposition,” Science 350, no. 6260 (2015): 530-533.

[29]

X. Zeng, L. Leng, F. Liu, et al., “Enhanced Li-O2 Battery Performance, Using Graphene-Like Nori-Derived Carbon as the Cathode and Adding LiI in the Electrolyte as a Promoter,” Electrochimica Acta 200 (2016): 231-238.

[30]

S. Ha, Y. Kim, D. Koo, et al., “Investigation Into the Stability of Li Metal Anodes in Li-O2 Batteries With a Redox Mediator,” Journal of Materials Chemistry A 5, no. 21 (2017): 10609-10621.

[31]

W. J. Kwak, H. G. Jung, D. Aurbach, and Y. K. Sun, “Optimized Bicompartment Two Solution Cells for Effective and Stable Operation of Li-O2 Batteries,” Advanced Energy Materials 7, no. 21 (2017): 1701232.

[32]

J. Wang, J. Liu, Y. Cai, F. Cheng, Z. Niu, and J. Chen, “Super P Carbon Modified Lithium Anode for High-Performance Li− O2 Batteries,” ChemElectroChem 5, no. 13 (2018): 1702-1707.

[33]

S. Zhang, G. Wang, J. Jin, L. Zhang, and Z. Wen, “Coupling Solid and Soluble Catalysts Toward Stable Li Anode for High-Performance Li-O2 Batteries,” Energy Storage Mater 28 (2020): 342-349.

[34]

W. J. Kwak, S. J. Park, H. G. Jung, and Y. K. Sun, “Optimized Concentration of Redox Mediator and Surface Protection of Li Metal for Maintenance of High Energy Efficiency in Li-O2 Batteries,” Advanced Energy Materials 8, no. 9 (2018): 1702258.

[35]

X. Zou, Z. Cheng, Q. Lu, et al., “Stabilizing Li Anodes in I2 Steam to Tackle the Shuttling-Induced Depletion of an Iodide/Triiodide Redox Mediator in Li-O2 Batteries With Suppressed Li Dendrite Growth,” ACS Appl Mater Interfaces 13, no. 45 (2021): 53859-53867.

[36]

I. Landa-Medrano, I. Lozano, N. Ortiz-Vitoriano, I. R. de Larramendi, and T. Rojo, “Redox Mediators: A Shuttle to Efficacy in Metal-O2 Batteries,” Journal of Materials Chemistry A 7, no. 15 (2019): 8746-8764.

[37]

W.-J. Kwak, D. Hirshberg, D. Sharon, et al., “Li-O2 Cells With LiBr as an Electrolyte and a Redox Mediator,” Energy & Environmental Science 9, no. 7 (2016): 2334-2345.

[38]

G.-H. Lee, M.-C. Sung, and D.-W. Kim, “Synergistic Coupling of a Self-Defense Redox Mediator and Anti-Superoxide Disproportionator in Lithium-Oxygen Batteries for High Stability,” Chem. Eng. J. (2023): 453.

[39]

W. Li, C. Sheng, L. Wang, et al., “Bifunctional Electrolyte Additive MgI2 for Improving Cycle Life in High-Efficiency Redox-Mediated Li-O2 Batteries,” Chemical Communications 59, no. 67 (2023): 10141-10144.

[40]

L. Xia, X. Yan, Y. Zhang, et al., “Lithium Zinc/Lithium Iodide Composite Modified Layer Toward Highly Stable Lithium Metal Anodes,” Electrochimica Acta 475 (2024): 143626.

[41]

J. Deng, Y. Wang, S. Qu, et al., “Fast Li+ Transport of Li−Zn Alloy Protective Layer Enabling Excellent Electrochemical Performance of Li Metal Anode,” Batteries Supercaps 4, no. 1 (2021): 140-145.

[42]

Z. Guo, Q. Zhang, C. Wang, Y. Zhang, S. Dong, and G. Cui, “I-Containing Polymer/Alloy Layer-Based Li Anode Mediating High-Performance Lithium-Air Batteries,” Advanced Functional Materials 32, no. 12 (2022): 2108993.

[43]

Y. Xu, S. Zhao, G. Zhou, et al., “Solubility-Dependent Protective Effects of Binary Alloys for Lithium Anode,” ACS Appl Energ Mater 3, no. 3 (2020): 2278-2284.

[44]

C. Wang, X. Sun, L. Yang, et al., “In Situ Ion-Conducting Protective Layer Strategy to Stable Lithium Metal Anode for all-Solid-State Sulfide-Based Lithium Metal Batteries,” Adv Mater Interfaces 8, no. 1 (2021): 2001698.

[45]

S. Li, Y. Huang, W. Ren, X. Li, M. Wang, and H. Cao, “Stabilize Lithium Metal Anode Through in-Situ Forming a Multi-Component Composite Protective Layer,” Chem. Eng. J. 422 (2021): 129911.

[46]

R. Jiao, Y.-F. Li, G.-D. Yang, et al., “Manipulation of the LiZn Alloy Process Toward High-Efficiency Lithium Metal Anodes,” ACS Appl Mater Interfaces 15, no. 21 (2023): 25615-25623.

[47]

M. Ahmad, S. Yingying, H. Sun, W. Shen, and J. Zhu, “SnO2/ZnO Composite Structure for the Lithium-ion Battery Electrode,” Journal of Solid State Chemistry 196 (2012): 326-331.

[48]

K. Thanner, A. Varzi, D. Buchholz, S. J. Sedlmaier, and S. Passerini, “Artificial Solid Electrolyte Interphases for Lithium Metal Electrodes by Wet Processing: The Role of Metal Salt Concentration and Solvent Choice,” ACS Appl Mater Interfaces 12, no. 29 (2020): 32851-32862.

[49]

Z. Zeng, G. Liu, Z. Jiang, L. Peng, and J. Xie, “Zinc Bis (2-ethylhexanoate), a Homogeneous and Bifunctional Additive, to Improve Conductivity and Lithium Deposition for Poly (ethylene oxide) Based all-Solid-State Lithium Metal Battery,” Journal of Power Sources 451 (2020): 227730.

[50]

Q. Chen, H. Li, M. L. Meyerson, et al., “Li-Zn Overlayer to Facilitate Uniform Lithium Deposition for Lithium Metal Batteries,” ACS Appl Mater Interfaces 13, no. 8 (2021): 9985-9993.

[51]

Y. Zhang, Y. Wu, L. Wan, et al., “Double Z-Scheme G-C3N4/BiOI/CdS Heterojunction With I3/I Pairs for Enhanced Visible Light Photocatalytic Performance,” Green Energy Environ 7, no. 6 (2022): 1377-1389.

[52]

Y. Bai, L. Ye, L. Wang, et al., “g-C3N4/Bi4O5I2 Heterojunction With I3/I Redox Mediator for Enhanced Photocatalytic CO2 Conversion,” Appl Catal B-Environ 194 (2016): 98-104.

[53]

X. Wu, W. Yu, K. Wen, et al., “Strategies to Suppress the Shuttle Effect of Redox Mediators in Lithium-Oxygen Batteries,” J Energy Chem 60 (2021): 135-149.

[54]

A. Nakanishi, M. L. Thomas, H.-M. Kwon, et al., “Electrolyte Composition in Li/O2 Batteries With LiI Redox Mediators: Solvation Effects on Redox Potentials and Implications for Redox Shuttling,” Journal of Physical Chemistry C 122, no. 3 (2018): 1522-1534.

[55]

J. Li, H. Su, M. Li, et al., “Fluorinated Interface Layer With Embedded Zinc Nanoparticles for Stable Lithium-Metal Anodes,” ACS Appl Mater Interfaces 13, no. 15 (2021): 17690-17698.

[56]

K.-H. Chen, K. N. Wood, E. Kazyak, et al., “Dead Lithium: Mass Transport Effects on Voltage, Capacity, and Failure of Lithium Metal Anodes,” Journal of Materials Chemistry A 5, no. 23 (2017): 11671-11681.

[57]

J. B. Park, C. Choi, S. Yu, K. Y. Chung, and D. W. Kim, “Porous Lithiophilic Li-Si Alloy-Type Interfacial Framework via Self-Discharge Mechanism for Stable Lithium Metal Anode With Superior Rate,” Advanced Energy Materials 11, no. 37 (2021): 2101544.

[58]

M. Guo, H. Dou, W. Zhao, X. Zhao, B. Wan, J. Wang, et al., “Three Dimensional Frameworks of Super Ionic Conductor for Thermodynamically and Dynamically Favorable Sodium Metal Anode,” Nano Energy 70 (2020): 104479.

[59]

W. Liu, S. W. Lee, D. Lin, et al., “Enhancing Ionic Conductivity in Composite Polymer Electrolytes With Well-Aligned Ceramic Nanowires,” Nat Energy 2, no. 5 (2017): 1-7.

[60]

L. Jiang, S. Tan, J. Yang, et al., “Zinc Atoms Introduction Alloying to the Artificial Interface Protection Layer for Ultra-Stable LiB Alloy Anodes,” Journal of Power Sources 556 (2023): 232373.

[61]

P. Biswal, S. Stalin, A. Kludze, S. Choudhury, and L. A. Archer, “Nucleation and Early Stage Growth of Li Electrodeposits,” Nano Letters 19, no. 11 (2019): 8191-8200.

[62]

A. Kondori, M. Esmaeilirad, A. M. Harzandi, et al., “A Room Temperature Rechargeable Li2O-Based Lithium-air Battery Enabled by a Solid Electrolyte,” Science 379, no. 6631 (2023): 499-505.

[63]

Y. Qiao, K. Jiang, H. Deng, and H. Zhou, “A High-Energy-Density and Long-Life Lithium-ion Battery via Reversible Oxide-peroxide Conversion,” Nat Catal 2, no. 11 (2019): 1035-1044.

[64]

Y. Zhang, X. Zhang, J. Wang, W. C. McKee, Y. Xu, and Z. Peng, “Potential-Dependent Generation of O2-and LiO2 and Their Critical Roles in O2 Reduction to Li2O2 in Aprotic Li-O2 Batteries,” Journal of Physical Chemistry C 120, no. 7 (2016): 3690-3698.

[65]

K. Huang, Z. Lu, S. Dai, and H. Fei, “Recent Progress of Halide Redox Mediators in Lithium-Oxygen Batteries: Functions, Challenges, and Perspectives,” Chem Bio Eng (2024).

[66]

L. Johnson, C. Li, Z. Liu, et al., “The Role of LiO2 Solubility in O2 Reduction in Aprotic Solvents and Its Consequences for Li-O2 Batteries,” Nature Chemistry 6, no. 12 (2014): 1091-1099.

[67]

Y. Wang and Y.-C. Lu, “Nonaqueous Lithium-Oxygen Batteries: Reaction Mechanism and Critical Open Questions,” Energy Storage Mater 28 (2020): 235-246.

[68]

E. Peled and S. Menkin, “SEI: Past, Present and Future,” Journal of the Electrochemical Society 164, no. 7 (2017): A1703.

[69]

J.-H. Kang, J. Lee, J.-W. Jung, et al., “Lithium-air Batteries: Air-Breathing Challenges and Perspective,” ACS Nano 14, no. 11 (2020): 14549-14578.

[70]

Y. Qiao, Z. Li, X. Wu, et al., “An Overview on the Unstable and Irreversible Lithium Metal Anode-Related Issues in Nonaqueous Li-O2/Air Batteries,” Journal of Materials Chemistry A (2024).

RIGHTS & PERMISSIONS

2025 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/