Perovskite-Inspired Materials (PIMs): Exploring Their Potential for Photovoltaic Applications

Dong-Am Park , Nam-Gyu Park

SusMat ›› 2025, Vol. 5 ›› Issue (3) : e70018

PDF
SusMat ›› 2025, Vol. 5 ›› Issue (3) : e70018 DOI: 10.1002/sus2.70018
REVIEW

Perovskite-Inspired Materials (PIMs): Exploring Their Potential for Photovoltaic Applications

Author information +
History +
PDF

Abstract

Perovskite-inspired materials (PIMs) have been investigated as alternatives to organic lead halide perovskites in order to explore novel lead-free materials for photovoltaics. This review describes the structural and optoelectronic properties of PIMs including double perovskites, chalcohalides, rudorffites, bismuth halides, and defect-ordered A3B2X9. Efforts have been recently made to overcome high carrier effective mass, non-radiative recombination, and large bandgaps of PIMs, limiting the photovoltaic performance of PIM-based solar cells. By analyzing the basis for the inferior performance observed by the PIMs, we propose strategies for enhancing the PIM-based solar cells in terms of engineering bulk light-absorbing PIM layers and their interfaces in order to provide insights into the design of future photovoltaic materials.

Keywords

chalcohalides / non-lead / perovskite-inspired materials / rudorffites / solar cells

Cite this article

Download citation ▾
Dong-Am Park, Nam-Gyu Park. Perovskite-Inspired Materials (PIMs): Exploring Their Potential for Photovoltaic Applications. SusMat, 2025, 5(3): e70018 DOI:10.1002/sus2.70018

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H.-S. Kim, C.-R. Lee, J.-H. Im, et al., “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell With Efficiency Exceeding 9%,” Scientific Reports 2, no. 1 (2012): 591.

[2]

“Best Research-Cell Efficiency Chart,” National Renewable Energy Laboratory, accessed December 25, 2024, https://www.nrel.gov/pv/cell-efficiency.html.

[3]

J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, and N.-G. Park, “High-Efficiency Perovskite Solar Cells,” Chemical Reviews 120, no. 15 (2020): 7867-7918.

[4]

H. Zhang, J.-W. Lee, G. Nasti, et al., “Lead Immobilization for Environmentally Sustainable Perovskite Solar Cells,” Nature 617, no. 7962 (2023): 687-695.

[5]

C. Zhang, Y. Son, H. Kim, et al., “Work Function Tuning of a Weak Adhesion Homojunction for Stable Perovskite Solar Cells,” Joule 8, no. 5 (2024): 1394-1411.

[6]

D.-A. Park, C. Zhang, and N.-G. Park, “Strain-Less Perovskite Film Engineered by Interfacial Molecule for Stable Perovskite Solar Cells,” ACS Energy Letters 9, no. 5 (2024): 2428-2435.

[7]

K.-W. Yeom and N.-G. Park, “Reducing Hole Trap Density in Sn-Pb Perovskite Solar Cells via Molecular Phenylhydrazine,” Solar RRL 8, no. 7 (2024): 2400068.

[8]

Y.-W. Choi, Y.-S. Jeon, D.-N. Lee, and N.-G. Park, “Microencapsulation of Grain Boundaries for Moisture-Stable Perovskite Solar Cells,” ACS Energy Letters 9, no. 8 (2024): 3754-3765.

[9]

M. V. Kovalenko, L. Protesescu, and M. I. Bodnarchuk, “Properties and Potential Optoelectronic Applications of Lead Halide Perovskite Nanocrystals,” Science 358, no. 6364 (2017): 745-750.

[10]

W.-J. Yin, T. Shi, and Y. Yan, “Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance,” Advanced Materials 26, no. 27 (2014): 4653-4658.

[11]

R. E. Brandt, V. Stevanović, D. S. Ginley, and T. Buonassisi, “Identifying Defect-Tolerant Semiconductors With High Minority-Carrier Lifetimes: Beyond Hybrid Lead Halide Perovskites,” MRS Communications 5, no. 2 (2015): 265-275.

[12]

W. Gao, X. Gao, T. A. Abtew, Y.-Y. Sun, S. Zhang, and P. Zhang, “Quasiparticle Band Gap of Organic-Inorganic Hybrid Perovskites: Crystal Structure, Spin-Orbit Coupling, and Self-Energy Effects,” Physical Review B 93, no. 8 (2016): 085202.

[13]

L. M. Herz, “Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits,” ACS Energy Letters 2, no. 7 (2017): 1539-1548.

[14]

A. Amat, E. Mosconi, E. Ronca, et al., “Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin-Orbit Coupling and Octahedra Tilting,” Nano Letters 14, no. 6 (2014): 3608-3616.

[15]

A. Miyata, A. Mitioglu, P. Plochocka, et al., “Direct Measurement of the Exciton Binding Energy and Effective Masses for Charge Carriers in Organic-Inorganic Tri-Halide Perovskites,” Nature Physics 11, no. 7 (2015): 582-587.

[16]

Q. Dong, Y. Fang, Y. Shao, et al., “Electron-Hole Diffusion Lengths >175 µm in Solution-Grown CH3NH3PbI3 Single Crystals,” Science 347, no. 6225 (2015): 967-970.

[17]

R. F. Wolffenbuttel, The Silicon Optical Absorption Coefficient Revisited (Springer, 2001), 1382-1385.

[18]

H. D. Barber, “Effective Mass and Intrinsic Concentration in Silicon,” Solid-State Electronics 10, no. 11 (1967): 1039-1051.

[19]

K. L. Shaklee and R. E. Nahory, “Valley-Orbit Splitting of Free Excitons? The Absorption Edge of Si,” Physical Review Letter 24, no. 17 (1970): 942-945.

[20]

R. Van Overstraeten, E. Cardijn, and F. Van de Wiele, “Influence of Contacts on the Measurement of the Permittivity of Silicon Single Crystals,” Journal of Applied Physics 41, no. 6 (1970): 2732-2733.

[21]

E. T. McClure, M. R. Ball, W. Windl, and P. M. Woodward, “Cs2AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors,” Chemistr of Materials 28, no. 5 (2016): 1348-1354.

[22]

J. A. Steele, P. Puech, M. Keshavarz, et al., “Giant Electron-Phonon Coupling and Deep Conduction Band Resonance in Metal Halide Double Perovskite,” ACS Nano 12, no. 8 (2018): 8081-8090.

[23]

R. Kentsch, M. Scholz, J. Horn, D. Schlettwein, K. Oum, and T. Lenzer, “Exciton Dynamics and Electron-Phonon Coupling Affect the Photovoltaic Performance of the Cs2AgBiBr6 Double Perovskite,” Journal of Physical Chemistry C 122, no. 45 (2018): 25940-25947.

[24]

C. Ming, Z. Chen, F. Zhang, et al., “Mixed Chalcogenide-Halides for Stable, Lead-Free and Defect-Tolerant Photovoltaics: Computational Screening and Experimental Validation of CuBiSCl2 With Ideal Band Gap,” Advanced Functional Materials 32, no. 27 (2022): 2112682.

[25]

B. Cucco, L. Pedesseau, C. Katan, J. Even, M. Kepenekian, and G. Volonakis, “Silver-Bismuth Halide Double Salts for Lead-Free Photovoltaics: Insights From Symmetry-Based Modeling,” Solar RRL 6, no. 12 (2022): 2200718.

[26]

I. Turkevych, S. Kazaoui, E. Ito, et al., “Photovoltaic Rudorffites: Lead-Free Silver Bismuth Halides Alternative to Hybrid Lead Halide Perovskites,” ChemSusChem 10, no. 19 (2017): 3754-3759.

[27]

Y. Li, H. Jiang, X. Wang, X. Hong, and B. Liang, “Recent Advances in Bismuth Oxyhalide Photocatalysts for Degradation of Organic Pollutants in Wastewater,” RSC Advances 11, no. 43 (2021): 26855-26875.

[28]

R. E. Brandt, R. C. Kurchin, R. L. Z. Hoye, et al., “Investigation of Bismuth Triiodide (BiI3) for Photovoltaic Applications,” Journal of Physical Chemistry Letters 6, no. 21 (2015): 4297-4302.

[29]

N. J. Podraza, W. Qiu, B. B. Hinojosa, et al., “Band Gap and Structure of Single Crystal BiI3: Resolving Discrepancies in Literature,” Journal of Applied Physics 114, no. 3 (2013).

[30]

D. Tiwari, F. Cardoso-Delgado, D. Alibhai, M. Mombrú, and D. J. Fermín, “Photovoltaic Performance of Phase-Pure Orthorhombic BiSI Thin-Films,” ACS Applied Energy Materials 2, no. 5 (2019): 3878-3885.

[31]

R. Nie, H.-S. Yun, M.-J. Paik, et al., “Efficient Solar Cells Based on Light-Harvesting Antimony Sulfoiodide,” Advanced Energy Materials 8, no. 7 (2018): 1701901.

[32]

K. T. Butler, J. M. Frost, and A. Walsh, “Ferroelectric Materials for Solar Energy Conversion: Photoferroics Revisited,” Energy & Environmental Science 8, no. 3 (2015): 838-848.

[33]

S. Valastro, S. Gavranovic, I. Deretzis, et al., “Temperature-Dependent Excitonic Band Gap in Lead-Free Bismuth Halide Low-Dimensional Perovskite Single Crystals,” Advanced Optical Materials 12, no. 11 (2024): 2302397.

[34]

B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, and E. M. J. Johansson, “Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application,” Advanced Materials 27, no. 43 (2015): 6806-6813.

[35]

A. Nilă, M. Baibarac, A. Matea, R. Mitran, and I. Baltog, “Exciton-Phonon Interactions in the Cs3Bi2I9 Crystal Structure Revealed by Raman Spectroscopic Studies,” Physica Status Solidi B 254, no. 4 (2017): 1552805.

[36]

P. Zhang, J. Yang, and S.-H. Wei, “Manipulation of Cation Combinations and Configurations of Halide Double Perovskites for Solar Cell Absorbers,” Journal of Materials Chemistry A 6, no. 4 (2018): 1809-1815.

[37]

Z. Xiao, W. Meng, J. Wang, and Y. Yan, “Thermodynamic Stability and Defect Chemistry of Bismuth-Based Lead-Free Double Perovskites,” ChemSusChem 9, no. 18 (2016): 2628-2633.

[38]

Y. Jiao, S. Zhang, Z. Yang, and G. Lu, “Indirect-to-Direct Band Gap Transition and Optical Properties of Metal Alloying of Cs2AgMxBr6 (M = Bi, In, Sb): Insights From the First Principles,” Computational & Theoretical Chemistry 1148 (2019): 55-59.

[39]

K.-z Du, W. Meng, X. Wang, Y. Yan, and M. DB, “Bandgap Engineering of Lead-Free Double Perovskite Cs2AgBiBr6 Through Trivalent Metal Alloying,” Angewandte Chemie International Edition 56, no. 28 (2017): 8158-8162.

[40]

Z. Zhang, Q. Sun, Y. Lu, et al., “Hydrogenated Cs2AgBiBr6 for Significantly Improved Efficiency of Lead-Free Inorganic Double Perovskite Solar Cell,” Nature Communications 13, no. 1 (2022): 3397.

[41]

W. Gao, C. Ran, J. Xi, et al., “High-Quality Cs2AgBiBr6 Double Perovskite Film for Lead-Free Inverted Planar Heterojunction Solar Cells With 2.2 % Efficiency,” ChemPhysChem 19, no. 14 (2018): 1696-1700.

[42]

B. Yang, W. Pan, H. Wu, et al., “Heteroepitaxial Passivation of Cs2AgBiBr6 Wafers With Suppressed Ionic Migration for X-ray Imaging,” Nature Communications 10, no. 1 (2019): 1989.

[43]

H. Wang, Y. Zou, H. Guo, et al., “Passivating A-Site and X-Site Vacancies Simultaneously via N-Heterocyclic Amines for Efficient Cs2AgBiBr6 Solar Cells,” ACS Applied Materials & Interfaces 16, no. 3 (2024): 4099-4107.

[44]

Y.-Y. Sun, J. Shi, J. Lian, et al., “Discovering Lead-Free Perovskite Solar Materials With a Split-Anion Approach,” Nanoscale 8, no. 12 (2016): 6284-6289.

[45]

R. Nie, A. Mehta, B.-W. Park, H.-W. Kwon, J. Im, and S. I. Seok, “Mixed Sulfur and Iodide-Based Lead-Free Perovskite Solar Cells,” Journal of the American Chemical Society 140, no. 3 (2018): 872-875.

[46]

T. Li, X. Wang, Y. Yan, and D. B. Mitzi, “Phase Stability and Electronic Structure of Prospective Sb-Based Mixed Sulfide and Iodide 3D Perovskite (CH3NH3)SbSI2,” Journal of Physical Chemistry Letters 9, no. 14 (2018): 3829-3833.

[47]

J. Huang, H. Wang, C. Jia, et al., “High-Efficiency and Ultra-Stable Cesium-Bismuth-Based Lead-Free Perovskite Solar Cells Without Modification,” Journal of Physical Chemistry Letters 15, no. 12 (2024): 3383-3389.

[48]

D. Quarta, D. M. Tobaldi, and C. Giansante, “Prospective Chalcohalide Perovskites: Pursuing (and Failing) the Synthesis of CsBiSCl2 Nanocrystals,” Journal of Physical Chemistry Letters 15, no. 30 (2024): 7645-7651.

[49]

A. Chakraborty, N. Pai, J. Zhao, B. R. Tuttle, A. N. Simonov, and V. Pecunia, “Rudorffites and Beyond: Perovskite-Inspired Silver/Copper Pnictohalides for Next-Generation Environmentally Friendly Photovoltaics and Optoelectronics,” Advanced Functional Materials 32, no. 36 (2022): 2203300.

[50]

G. K. Grandhi, D. Hardy, M. Krishnaiah, et al., “Wide-Bandgap Perovskite-Inspired Materials: Defect-Driven Challenges for High-Performance Optoelectronics,” Advanced Functional Materials 34, no. 50 (2024): 2307441.

[51]

Y. Kim, Z. Yang, A. Jain, et al., “Pure Cubic-Phase Hybrid Iodobismuthates AgBi2I7 for Thin-Film Photovoltaics,” Angewandte Chemie International Edition 55, no. 33 (2016): 9586-9590.

[52]

H. Zhu, M. Pan, M. B. Johansson, and E. M. J. Johansson, “High Photon-to-Current Conversion in Solar Cells Based on Light-Absorbing Silver Bismuth Iodide,” ChemSusChem 10, no. 12 (2017): 2592-2596.

[53]

A. Kulkarni, A. K. Jena, M. Ikegami, and T. Miyasaka, “Performance Enhancement of AgBi2I7 Solar Cells by Modulating a Solvent-Mediated Adduct and Tuning Remnant BiI3 in One-Step Crystallization,” Chemical Communications 55, no. 28 (2019): 4031-4034.

[54]

N. Pai, J. Lu, T. R. Gengenbach, et al., “Silver Bismuth Sulfoiodide Solar Cells: Tuning Optoelectronic Properties by Sulfide Modification for Enhanced Photovoltaic Performance,” Advanced Energy Materials 9, no. 5 (2019): 1803396.

[55]

M. Scholz, O. Flender, K. Oum, and T. Lenzer, “Pronounced Exciton Dynamics in the Vacancy-Ordered Bismuth Halide Perovskite (CH3NH3)3Bi2I9 Observed by Ultrafast UV-vis-NIR Transient Absorption Spectroscopy,” Journal of Physical Chemistry C 121, no. 22 (2017): 12110-12116.

[56]

H. Han, M. Hong, S. S. Gokhale, et al., “Defect Engineering of BiI3 Single Crystals: Enhanced Electrical and Radiation Performance for Room Temperature Gamma-Ray Detection,” Journal of Physical Chemistry C 118, no. 6 (2014): 3244-3250.

[57]

M.-H. Du and D. J. Singh, “Enhanced Born Charges in III-VII, IV-VII 2, and V-VII 3 Compounds,” Physical Review B 82, no. 4 (2010): 045203.

[58]

U. H. Hamdeh, R. D. Nelson, B. J. Ryan, U. Bhattacharjee, J. W. Petrich, and M. G. Panthani, “Solution-Processed BiI3 Thin Films for Photovoltaic Applications: Improved Carrier Collection via Solvent Annealing,” Chemistry of Materials 28, no. 18 (2016): 6567-6574.

[59]

D. Tiwari, D. Alibhai, and D. J. Fermin, “Above 600 mV Open-Circuit Voltage BiI3 Solar Cells,” ACS Energy Letters 3, no. 8 (2018): 1882-1886.

[60]

F. Demartin, C. M. Gramaccioli, and I. Campostrini, “Demicheleite-(I), BiSI, a New Mineral From La Fossa Crater, Vulcano, Aeolian Islands, Italy,” Mineralogical Magazine 74, no. 1 (2010): 141-145.

[61]

A. M. Ganose, M. Cuff, K. T. Butler, A. Walsh, and D. O. Scanlon, “Interplay of Orbital and Relativistic Effects in Bismuth Oxyhalides: BiOF, BiOCl, BiOBr, and BiOI,” Chemistry of Materials 28, no. 7 (2016): 1980-1984.

[62]

A. M. Ganose, K. T. Butler, A. Walsh, and D. O. Scanlon, “Relativistic Electronic Structure and Band Alignment of BiSI and BiSeI: Candidate Photovoltaic Materials,” Journal of Materials Chemistry A 4, no. 6 (2016): 2060-2068.

[63]

A. M. Ganose, S. Matsumoto, J. Buckeridge, and D. O. Scanlon, “Defect Engineering of Earth-Abundant Solar Absorbers BiSI and BiSeI,” Chemistry of Materials 30, no. 11 (2018): 3827-3835.

[64]

R. Nie, J. Im, and S. I. Seok, “Efficient Solar Cells Employing Light-Harvesting Sb0.67Bi0.33SI,” Advanced Materials 31, no. 18 (2019): 1808344.

[65]

A. J. Lehner, D. H. Fabini, H. A. Evans, et al., “Crystal and Electronic Structures of Complex Bismuth Iodides A3Bi2I9 (A = K, Rb, Cs) Related to Perovskite: Aiding the Rational Design of Photovoltaics,” Chemistry of Materials 27, no. 20 (2015): 7137-7148.

[66]

C. Wu, Q. Zhang, G. Liu, et al., “From Pb to Bi: A Promising Family of Pb-Free Optoelectronic Materials and Devices,” Advanced Energy Materials 10, no. 13 (2020): 1902496.

[67]

B. Chabot and E. Parthe, “Cs3Sb2I9 and Cs3Bi2I9 With the Hexagonal Cs3Cr2Cl9 Structure Type,” Acta Crystallographica. Section B, Structural Science 34, no. 2 (1978): 645-648.

[68]

K. M. McCall, C. C. Stoumpos, O. Y. Kontsevoi, G. C. B. Alexander, B. W. Wessels, and M. G. Kanatzidis, “From 0D Cs3Bi2I9 to 2D Cs3Bi2I6Cl3: Dimensional Expansion Induces a Direct Band Gap but Enhances Electron-Phonon Coupling,” Chemistry of Materials 31, no. 7 (2019): 2644-2650.

[69]

S. S. Shin, J. P. Correa Baena, R. C. Kurchin, et al., “Solvent-Engineering Method to Deposit Compact Bismuth-Based Thin Films: Mechanism and Application to Photovoltaics,” Chemistry of Materials 30, no. 2 (2018): 336-343.

[70]

J. Li, X. Liu, J. Xu, et al., “Fabrication of Sulfur-Incorporated Bismuth-Based Perovskite Solar Cells via a Vapor-Assisted Solution Process,” Solar RRL 3, no. 9 (2019): 1900218.

[71]

Z. Chen, Q. Dong, Y. Liu, et al., “Thin Single Crystal Perovskite Solar Cells to Harvest Below-Bandgap Light Absorption,” Nature Communications 8, no. 1 (2017): 1890.

[72]

Y. C. Kim, K. H. Kim, D.-Y. Son, et al., “Printable Organometallic Perovskite Enables Large-Area, Low-Dose X-ray Imaging,” Nature 550, no. 7674 (2017): 87-91.

[73]

Z. Liang, Y. Zhang, H. Xu, et al., “Homogenizing Out-of-Plane Cation Composition in Perovskite Solar Cells,” Nature 624, no. 7992 (2023): 557-563.

[74]

C. Ma, M.-C. Kang, S.-H. Lee, et al., “Photovoltaically Top-Performing Perovskite Crystal Facets,” Joule 6, no. 11 (2022): 2626-2643.

[75]

C. Ma, F. T. Eickemeyer, S.-H. Lee, et al., “Unveiling Facet-Dependent Degradation and Facet Engineering for Stable Perovskite Solar Cells,” Science 379, no. 6628 (2023): 173-178.

[76]

Q. Jia, C. Li, W. Tian, M. B. Johansson, E. M. J. Johansson, and R. Yang, “Large-Grained All-Inorganic Bismuth-Based Perovskites With Narrow Band Gap via Lewis Acid-Base Adduct Approach,” ACS Applied Materials & Interfaces 12, no. 39 (2020): 43876-43884.

[77]

C. Ma, M.-C. Kang, S.-H. Lee, et al., “Facet-Dependent Passivation for Efficient Perovskite Solar Cells,” Journal of the American Chemical Society 145, no. 44 (2023): 24349-24357.

[78]

J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, et al., “CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells,” Advanced Materials 25, no. 27 (2013): 3727-3732.

[79]

M. H. Kumar, N. Yantara, S. Dharani, et al., “Flexible, Low-Temperature, Solution Processed ZnO-Based Perovskite Solid State Solar Cells,” Chemical Communications 49, no. 94 (2013): 11089-11091.

[80]

P. Loper, S.-J. Moon, S. M. de Nicolas, et al., “Organic-Inorganic Halide Perovskite/Crystalline Silicon Four-Terminal Tandem Solar Cells,” Physical Chemistry Chemical Physics 17, no. 3 (2015): 1619-1629.

[81]

C. Ma and N.-G. Park, “A Realistic Methodology for 30% Efficient Perovskite Solar Cells,” Chemistry 6, no. 6 (2020): 1254-1264.

[82]

A. Al-Ashouri, E. Köhnen, B. Li, et al., “Monolithic Perovskite/Silicon Tandem Solar Cell With >29% Efficiency by Enhanced Hole Extraction,” Science 370, no. 6522 (2020): 1300-1309.

[83]

S.-G. Kim, G. C. Fish, E. Socie, et al., “Photo-Doping of spiro-OMeTAD for Highly Stable and Efficient Perovskite Solar Cells,” Joule 8, no. 6 (2024): 1707-1722.

[84]

C. Ma, B. Kim, D.-H. Kang, S.-W. Kim, and N.-G. Park, “Nonchemical n- and p-Type Charge Transfer Doping of FAPbI3 Perovskite,” ACS Energy Letters 6, no. 8 (2021): 2817-2824.

[85]

S. Liu, J. Li, W. Xiao, et al., “Buried Interface Molecular Hybrid for Inverted Perovskite Solar Cells,” Nature 632, no. 8025 (2024): 536-542.

[86]

S. M. Kang, S. Jang, J.-K. Lee, et al., “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12, no. 18 (2016): 2443-2449.

[87]

J. S. Choi, Y.-W. Jang, U. Kim, M. Choi, and S. M. Kang, “Optically and Mechanically Engineered Anti-Reflective Film for Highly Efficient Rigid and Flexible Perovskite Solar Cells,” Advanced Energy Materials 12, no. 33 (2022): 2201520.

[88]

F. Bai, Y. Hu, Y. Hu, T. Qiu, X. Miao, and S. Zhang, “Lead-Free, Air-Stable Ultrathin Cs3Bi2I9 Perovskite Nanosheets for Solar Cells,” Solar Energy Materials and Solar Cells 184 (2018): 15-21.

[89]

B. Yoo, D. Ding, J. M. Marin-Beloqui, et al., “Improved Charge Separation and Photovoltaic Performance of BiI3 Absorber Layers by Use of an in Situ Formed BiSI Interlayer,” ACS Applied Energy Materials 2, no. 10 (2019): 7056-7061.

RIGHTS & PERMISSIONS

2025 The Author(s). SusMat published by Sichuan University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/